280 research outputs found

    Geometry-induced reduction of the critical current in superconducting nanowires

    Full text link
    Reduction of the critical current in narrow superconducting NbN lines with sharp and rounded bends with respect to the critical current in straight lines was studied at different temperatures. We compare our experimental results with the reduction expected in the framework of the London model and the Ginsburg-Landau model. We have experimentally found that the reduction is significantly less than either model predicts. We also show that in our NbN lines the bends mostly contribute to the reduction of the critical current at temperatures well below the superconducting transition temperature

    Considerable enhancement of the critical current in a superconducting film by magnetized magnetic strip

    Full text link
    We show that a magnetic strip on top of a superconducting strip magnetized in a specified direction may considerably enhance the critical current in the sample. At fixed magnetization of the magnet we observed diode effect - the value of the critical current depends on the direction of the transport current. We explain these effects by a influence of the nonuniform magnetic field induced by the magnet on the current distribution in the superconducting strip. The experiment on a hybrid Nb/Co structure confirmed the predicted variation of the critical current with a changing value of magnetization and direction of the transport current.Comment: 6 pages, 7 figure

    Quantum interference of electrons in Nb_{5-\delta}Te_4 single crystals

    Full text link
    The compound Nb5−δTe4Nb_{5-\delta}Te_4 (δ=0.23\delta=0.23) with quasi-one-dimensional crystal structure undergoes a transition to superconductivity at TcT_c=0.6--0.9 K. Its electronic transport properties in the normal state are studied in the temperature range 1.3--270 K and in magnetic fields up to 11 T. The temperature variation of the resistivity is weak (<2<2%) in the investigated temperature range. Nonmonotonic behavior of the resistivity is observed which is characterized by two local maxima at T∼T\sim2 K and ∼\sim30 K. The temperature dependence of the resistivity is interpreted as an interplay of weak localization, weak antilocalization, and electron-electron interaction effects in the diffusion and the Cooper channel. The temperature dependence of the dephasing time τϕ\tau_\phi extracted from the magnetoresistance data is determined by the electron-phonon interaction. The saturation of τϕ\tau_\phi in the low-temperature limit correlates with TcT_c of the individual crystal and is ascribed to the scattering on magnetic impurities.Comment: 8 pages, 6 figure

    Nonequilibrium phenomena in high Landau levels

    Full text link
    Developments in the physics of 2D electron systems during the last decade have revealed a new class of nonequilibrium phenomena in the presence of a moderately strong magnetic field. The hallmark of these phenomena is magnetoresistance oscillations generated by the external forces that drive the electron system out of equilibrium. The rich set of dramatic phenomena of this kind, discovered in high mobility semiconductor nanostructures, includes, in particular, microwave radiation-induced resistance oscillations and zero-resistance states, as well as Hall field-induced resistance oscillations and associated zero-differential resistance states. We review the experimental manifestations of these phenomena and the unified theoretical framework for describing them in terms of a quantum kinetic equation. The survey contains also a thorough discussion of the magnetotransport properties of 2D electrons in the linear response regime, as well as an outlook on future directions, including related nonequilibrium phenomena in other 2D electron systems.Comment: 60 pages, 41 figure

    Electron-Assisted Hopping in Two Dimensions

    Full text link
    We have studied the non-ohmic effects in the conductivity of a two-dimensional system which undergoes the crossover from weak to strong localization with decreasing electron concentration. When the electrons are removed from equilibrium with phonons, the hopping conductivity depends only on the electron temperature. This indicates that the hopping transport in a system with a large localization length is assisted by electron-electron interactions rather than by the phonons.Comment: 5 pages, 4 figure

    Quantum Size Effect transition in percolating nanocomposite films

    Full text link
    We report on unique electronic properties in Fe-SiO2 nanocomposite thin films in the vicinity of the percolation threshold. The electronic transport is dominated by quantum corrections to the metallic conduction of the Infinite Cluster (IC). At low temperature, mesoscopic effects revealed on the conductivity, Hall effect experiments and low frequency electrical noise (random telegraph noise and 1/f noise) strongly support the existence of a temperature-induced Quantum Size Effect (QSE) transition in the metallic conduction path. Below a critical temperature related to the geometrical constriction sizes of the IC, the electronic conductivity is mainly governed by active tunnel conductance across barriers in the metallic network. The high 1/f noise level and the random telegraph noise are consistently explained by random potential modulation of the barriers transmittance due to local Coulomb charges. Our results provide evidence that a lowering of the temperature is somehow equivalent to a decrease of the metal fraction in the vicinity of the percolation limit.Comment: 21 pages, 8 figure
    • …
    corecore