15 research outputs found

    Ab initio study of the photoabsorption of 4^4He

    Full text link
    There are some discrepancies in the low energy data on the photoabsorption cross section of 4^4He. We calculate the cross section with realistic nuclear forces and explicitly correlated Gaussian functions. Final state interactions and two- and three-body decay channels are taken into account. The cross section is evaluated in two methods: With the complex scaling method the total absorption cross section is obtained up to the rest energy of a pion, and with the microscopic RR-matrix method both cross sections 4^4He(γ,p\gamma, p)3^3H and 4^4He(γ,n\gamma, n)3^3He are calculated below 40\,MeV. Both methods give virtually the same result. The cross section rises sharply from the 3^3H+pp threshold, reaching a giant resonance peak at 26--27\,MeV. Our calculation reproduces almost all the data above 30\,MeV. We stress the importance of 3^3H+pp and 3^3He+nn cluster configurations on the cross section as well as the effect of the one-pion exchange potential on the photonuclear sum rule.Comment: 15 pages, 12 figure

    Influence of Gamma-Ray Emission on the Isotopic Composition of Clouds in the Interstellar Medium

    Full text link
    We investigate one mechanism of the change in the isotopic composition of cosmologically distant clouds of interstellar gas whose matter was subjected only slightly to star formation processes. According to the standard cosmological model, the isotopic composition of the gas in such clouds was formed at the epoch of Big Bang nucleosynthesis and is determined only by the baryon density in the Universe. The dispersion in the available cloud composition observations exceeds the errors of individual measurements. This may indicate that there are mechanisms of the change in the composition of matter in the Universe after the completion of Big Bang nucleosynthesis. We have calculated the destruction and production rates of light isotopes (D, 3He, 4He) under the influence of photonuclear reactions triggered by the gamma-ray emission from active galactic nuclei (AGNs). We investigate the destruction and production of light elements depending on the spectral characteristics of the gamma-ray emission. We show that in comparison with previous works, taking into account the influence of spectral hardness on the photonuclear reaction rates can increase the characteristic radii of influence of the gamma-ray emission from AGNs by a factor of 2-8. The high gamma-ray luminosities of AGNs observed in recent years increase the previous estimates of the characteristic radii by two orders of magnitude. This may suggest that the influence of the emission from AGNs on the change in the composition of the medium in the immediate neighborhood (the host galaxy) has been underestimated.Comment: 13 pages, 13 figures, 3 table

    The Lorentz Integral Transform (LIT) method and its applications to perturbation induced reactions

    Full text link
    The LIT method has allowed ab initio calculations of electroweak cross sections in light nuclear systems. This review presents a description of the method from both a general and a more technical point of view, as well as a summary of the results obtained by its application. The remarkable features of the LIT approach, which make it particularly efficient in dealing with a general reaction involving continuum states, are underlined. Emphasis is given on the results obtained for electroweak cross sections of few--nucleon systems. Their implications for the present understanding of microscopic nuclear dynamics are discussed.Comment: 83 pages, 31 figures. Topical review. Corrected typo

    Big-Bang Nucleosynthesis and Hadronic Decay of Long-Lived Massive Particles

    Full text link
    We study the big-bang nucleosynthesis (BBN) with the long-lived exotic particle, called X. If the lifetime of X is longer than \sim 0.1 sec, its decay may cause non-thermal nuclear reactions during or after the BBN, altering the predictions of the standard BBN scenario. We pay particular attention to its hadronic decay modes and calculate the primordial abundances of the light elements. Using the result, we derive constraints on the primordial abundance of X. Compared to the previous studies, we have improved the following points in our analysis: The JETSET 7.4 Monte Carlo event generator is used to calculate the spectrum of hadrons produced by the decay of X; The evolution of the hadronic shower is studied taking account of the details of the energy-loss processes of the nuclei in the thermal bath; We have used the most recent observational constraints on the primordial abundances of the light elements; In order to estimate the uncertainties, we have performed the Monte Carlo simulation which includes the experimental errors of the cross sections and transfered energies. We will see that the non-thermal productions of D, He3, He4 and Li6 provide stringent upper bounds on the primordial abundance of late-decaying particle, in particular when the hadronic branching ratio of X is sizable. We apply our results to the gravitino problem, and obtain upper bound on the reheating temperature after inflation.Comment: 94 pages, 49 figures, to appear in Phys. Rev. D. This is a full length paper of the preprint astro-ph/040249

    Radiative decay of a massive particle and the non-thermal process in primordial nucleosynthesis

    Get PDF
    We consider the effects on big bang nucleosynthesis (BBN) of the radiative decay of a long-lived massive particle. If high-energy photons are emitted after the BBN epoch (t1103t \sim 1 - 10^3 sec), they may change the abundances of the light elements through photodissociation processes, which may result in a significant discrepancy between standard BBN and observation. Taking into account recent observational and theoretical developments in this field, we revise our previous study constraining the abundance of the radiatively-decaying particles. In particular, on the theoretical side, it was recently claimed that the non-thermal production of 6^6Li, which is caused by the photodissociation of \hefour, most severely constrains the abundance of the radiatively-decaying particle. We will see, however, it is premature to emphasize the importance of the non-thermal production of 6^6Li because (i) the theoretical computation of the 6^6Li abundance has large uncertainty due to the lack of the precise understanding of the 6^6Li production cross section, and (ii) the observational data of 6^6Li abundance has large errors.Comment: 15 pages, using REVTeX and 3 postscript figure

    Electromagnetic Cascades and Cascade Nucleosynthesis in the Early Universe

    Get PDF
    We describe a calculation of electromagnetic cascading in radiation and matter in the early universe initiated by the decay of massive particles or by some other process. We have used a combination of Monte Carlo and numerical techniques which enables us to use exact cross sections, where known, for all the relevant processes. In cascades initiated after the epoch of big bang nucleosynthesis γ\gamma-rays in the cascades will photodisintegrate 4^4He, producing 3^3He and deuterium. Using the observed 3^3He and deuterium abundances we are able to place constraints on the cascade energy deposition as a function of cosmic time. In the case of the decay of massive primordial particles, we place limits on the density of massive primordial particles as a function of their mean decay time, and on the expected intensity of decay neutrinos.Comment: compressed and uuencoded postscript. We now include a comparison with previous work of the photon spectrum in the cascade and the limits we calculate for the density of massive particles. The method of calculation of photon spectra at low energies has been improved. Most figures are revised. Our conclusions are substantially unchange

    Femtometer Toroidal Structures in Nuclei

    Get PDF
    The two-nucleon density distributions in states with isospin T=0T=0, spin SS=1 and projection MSM_S=0 and ±\pm1 are studied in 2^2H, 3,4^{3,4}He, 6,7^{6,7}Li and 16^{16}O. The equidensity surfaces for MSM_S=0 distributions are found to be toroidal in shape, while those of MSM_S=±\pm1 have dumbbell shapes at large density. The dumbbell shapes are generated by rotating tori. The toroidal shapes indicate that the tensor correlations have near maximal strength at r<2r<2 fm in all these nuclei. They provide new insights and simple explanations of the structure and electromagnetic form factors of the deuteron, the quasi-deuteron model, and the dpdp, dddd and αd\alpha d LL=2 (DD-wave) components in 3^3He, 4^4He and 6^6Li. The toroidal distribution has a maximum-density diameter of \sim1 fm and a half-maximum density thickness of \sim0.9 fm. Many realistic models of nuclear forces predict these values, which are supported by the observed electromagnetic form factors of the deuteron, and also predicted by classical Skyrme effective Lagrangians, related to QCD in the limit of infinite colors. Due to the rather small size of this structure, it could have a revealing relation to certain aspects of QCD.Comment: 35 pages in REVTeX, 25 PostScript figure
    corecore