181,838 research outputs found

    Anisotropy of Resonant Inelastic X-Ray Scattering at the K Edge of Si:Theoretical Analysis

    Full text link
    We investigate theoretically the resonant inelastic x-ray scattering (RIXS) at the KK edge of Si on the basis of an ab initio calculation. We calculate the RIXS spectra with systematically varying transfered-momenta, incident-photon energy and incident-photon polarization. We confirm the anisotropy of the experimental spectra by Y. Ma {\it et al}. (Phys. Rev. Lett. 74, 478 (1995)), providing a quantitative explanation of the spectra.Comment: 18 pages, 11 figure

    Nearly Mass-Degenerate Majorana Neutrinos: Double Beta Decay and Neutrino Oscillations

    Get PDF
    Assuming equal tree-level Majorana masses for the standard-model neutrinos, either from the canonical seesaw mechanism or from a heavy scalar triplet, I discuss how their radiative splitting may be relevant to neutrinoless double beta decay and neutrino oscillations.Comment: 12 pages, including 4 figures, talk at NANP9

    Notch effects in tensile behavior of AM60 magnesium alloys

    Get PDF
    The deformation and failure behavior of an AM60 magnesium alloy was investigated using tensile test on circumferentially notched specimens with different notch radii. The strain and stress triaxiality corresponding to the failure point were evaluated using both analytical and finite element analyses. Combining with systematical observations of the fracture surfaces, it is concluded that deformation and failure of AM60 magnesium alloy are notch (constraint) sensitive. The failure mechanisms change from ductile tearing to quasi cleavage with the increase of constraint

    Exotic behavior and crystal structures of calcium under pressure

    Full text link
    Experimental studies established that calcium undergoes several counterintuitive transitions under pressure: fcc \rightarrow bcc \rightarrow simple cubic \rightarrow Ca-IV \rightarrow Ca-V, and becomes a good superconductor in the simple cubic and higher-pressure phases. Here, using ab initio evolutionary simulations, we explore the behavior of Ca under pressure and find a number of new phases. Our structural sequence differs from the traditional picture for Ca, but is similar to that for Sr. The {\beta}-tin (I41/amd) structure, rather than simple cubic, is predicted to be the theoretical ground state at 0 K and 33-71 GPa. This structure can be represented as a large distortion of the simple cubic structure, just as the higher-pressure phases stable between 71 and 134 GPa. The structure of Ca-V, stable above 134 GPa, is a complex host-guest structure. According to our calculations, the predicted phases are superconductors with Tc increasing under pressure and reaching ~20 K at 120 GPa, in good agreement with experiment
    corecore