174 research outputs found

    Anisotropy effects in a mixed quantum-classical Heisenberg model in two dimensions

    Full text link
    We analyse a specific two dimensional mixed spin Heisenberg model with exchange anisotropy, by means of high temperature expansions and Monte Carlo simulations. The goal is to describe the magnetic properties of the compound (NBu_{4})_{2}Mn_{2}[Cu(opba)]_{3}\cdot 6DMSO\cdot H_{2}O which exhibits a ferromagnetic transition at Tc=15KT_{c}=15K. Extrapolating our analysis on the basis of renormalisation group arguments, we find that this transition may result from a very weak anisotropy effect.Comment: 8 pages, 10 Postscript figure

    Thermodynamics of a mixed quantum-classical Heisenberg model in two dimensions

    Full text link
    We study the planar antiferromagnetic Heisenberg model on a decorated hexagonal lattice, involving both classical spins (occupying the vertices) and quantum spins (occupying the middle of the links). This study is motivated by the description of a recently synthesized molecular magnetic compound. First, we trace out the spin 1/2 degrees of freedom to obtain a fully classical model with an effective ferromagnetic interaction. Then, using high temperature expansions and Monte Carlo simulations, we analyse its thermal and magnetic properties. We show that it provides a good quantitative description of the magnetic susceptibility of the molecular magnet in its paramagnetic phase.Comment: Revtex, 6 pages, 4 included postscript figures, fig.1 upon request to [email protected] . To appear in J. of Physic C (condensed matter

    Random sequential adsorption on a dashed line

    Full text link
    We study analytically and numerically a model of random sequential adsorption (RSA) of segments on a line, subject to some constraints suggested by two kinds of physical situations: - deposition of dimers on a lattice where the sites have a spatial extension; - deposition of extended particles which must overlap one (or several) adsorbing sites on the substrate. Both systems involve discrete and continuous degrees of freedom, and, in one dimension, are equivalent to our model, which depends on one length parameter. When this parameter is varied, the model interpolates between a variety of known situations : monomers on a lattice, "car-parking" problem, dimers on a lattice. An analysis of the long-time behaviour of the coverage as a function of the parameter exhibits an anomalous 1/t^2 approach to the jamming limit at the transition point between the fast exponential kinetics, characteristic of the lattice model, and the 1/t law of the continuous one.Comment: 14 pages (Latex) + 4 Postscript figure

    Adsorption of Line Segments on a Square Lattice

    Full text link
    We study the deposition of line segments on a two-dimensional square lattice. The estimates for the coverage at jamming obtained by Monte-Carlo simulations and by 7th7^{th}-order time-series expansion are successfully compared. The non-trivial limit of adsorption of infinitely long segments is studied, and the lattice coverage is consistently obtained using these two approaches.Comment: 19 pages in Latex+5 postscript files sent upon request ; PTB93_

    Critical properties of loop percolation models with optimization constraints

    Full text link
    We study loop percolation models in two and in three space dimensions, in which configurations of occupied bonds are forced to form closed loop. We show that the uncorrelated occupation of elementary plaquettes of the square and the simple cubic lattice by elementary loops leads to a percolation transition that is in the same universality class as the conventional bond percolation. In contrast to this an optimization constraint for the loop configurations, which then have to minimize a particular generic energy function, leads to a percolation transition that constitutes a new universality class, for which we report the critical exponents. Implication for the physics of solid-on-solid and vortex glass models are discussed.Comment: 8 pages, 8 figure

    Universal Short-Time Dynamics in the Kosterlitz-Thouless Phase

    Full text link
    We study the short-time dynamics of systems that develop ``quasi long-range order'' after a quench to the Kosterlitz-Thouless phase. With the working hypothesis that the ``universal short-time behavior'', previously found in Ising-like systems, also occurs in the Kosterlitz-Thouless phase, we explore the scaling behavior of thermodynamic variables during the relaxational process following the quench. As a concrete example, we investigate the two-dimensional 66-state clock model by Monte Carlo simulation. The exponents governing the magnetization, the second moment, and the autocorrelation function are calculated. From them, by means of scaling relations, estimates for the equilibrium exponents zz and η\eta are derived. In particular, our estimates for the temperature-dependent anomalous dimension η\eta that governs the static correlation function are consistent with existing analytical and numerical results and, thus, confirm our working hypothesis.Comment: 16 pages, 9 postscript figures, REVTEX 3.0, submitted to Phys. Rev.

    Magnetic and thermal properties of 4f-3d ladder-type molecular compounds

    Full text link
    We report on the low-temperature magnetic susceptibilities and specific heats of the isostructural spin-ladder molecular complexes L2_{2}[M(opba)]_{3\cdot xDMSOâ‹…y\cdot yH2_{2}O, hereafter abbreviated with L2_{2}M3_{3} (where L = La, Gd, Tb, Dy, Ho and M = Cu, Zn). The results show that the Cu containing complexes (with the exception of La2_{2}Cu3_{3}) undergo long range magnetic order at temperatures below 2 K, and that for Gd2_{2}Cu3_{3} this ordering is ferromagnetic, whereas for Tb2_{2}Cu3_{3} and Dy2_{2}Cu3_{3} it is probably antiferromagnetic. The susceptibilities and specific heats of Tb2_{2}Cu3_{3} and Dy2_{2}Cu3_{3} above TCT_{C} have been explained by means of a model taking into account nearest as well as next-nearest neighbor magnetic interactions. We show that the intraladder L--Cu interaction is the predominant one and that it is ferromagnetic for L = Gd, Tb and Dy. For the cases of Tb, Dy and Ho containing complexes, strong crystal field effects on the magnetic and thermal properties have to be taken into account. The magnetic coupling between the (ferromagnetic) ladders is found to be very weak and is probably of dipolar origin.Comment: 13 pages, 15 figures, submitted to Phys. Rev.

    Circulating Mesenchymal Stem Cells Microparticles in Patients with Cerebrovascular Disease

    Get PDF
    Preclinical and clinical studies have shown that the application of CD105+ mesenchymal stem cells (MSCs) is feasible and may lead to recovery after stroke. In addition, circulating microparticles are reportedly functional in various disease conditions. We tested the levels of circulating CD105+ microparticles in patients with acute ischemic stroke. The expression of CD105 (a surface marker of MSCs) and CXCR4 (a CXC chemokine receptor for MSC homing) on circulating microparticles was evaluated by flow cytometry of samples from 111 patients and 50 healthy subjects. The percentage of apoptotic CD105 microparticles was determined based on annexin V (AV) expression. The relationship between serum levels of CD105+/AV− microparticles, stromal cells derived factor-1α (SDF-1α), and the extensiveness of cerebral infarcts was also evaluated. CD105+/AV− microparticles were higher in stroke patients than control subjects. Correlation analysis showed that the levels of CD105+/AV− microparticles increased as the baseline stroke severity increased. Multivariate testing showed that the initial severity of stroke was independently associated with circulating CD105+/AV− microparticles (OR, 1.103 for 1 point increase in the NIHSS score on admission; 95% CI, 1.032–1.178) after adjusting for other variables. The levels of CD105+/CXCR4+/AV− microparticles were also increased in patients with severe disability (r = 0.192, p = 0.046 for NIHSS score on admission), but were decreased with time after stroke onset (r = −0.204, p = 0.036). Risk factor profiles were not associated with the levels of circulating microparticles or SDF-1α. In conclusion, our data showed that stroke triggers the mobilization of MSC-derived microparticles, especially in patients with extensive ischemic stroke
    • …
    corecore