236 research outputs found

    Neutrino masses through see-saw mechanism in 3-3-1 models

    Full text link
    Some years ago it was shown by Ma that in the context of the electroweak standard model there are, at the tree level, only three ways to generate small neutrino masses by the see-saw mechanism via one effective dimension-five operator. Here we extend this approach to 3-3-1 chiral models showing that in this case there are several dimension-five operators and we also consider their tree level realization.Comment: RevTex, 7 pages and 4 .eps figures. Version published in Phys. Rev. D. with a change in the titl

    Large Solar Neutrino Mixing in an Extended Zee Model

    Full text link
    The Zee model, which employs the standard Higgs scalar (ϕ\phi) with its duplicate (ϕâ€Č\phi^\prime) and a singly charged scalar (h+h^+), can utilize two global symmetries associated with the conservation of the numbers of ϕ\phi and ϕâ€Č\phi^\prime, Nϕ,ϕâ€ČN_{\phi,\phi^\prime}, where Nϕ+Nϕâ€ČN_\phi+N_{\phi^\prime} coincides with the hypercharge while Nϕ−Nϕâ€ČN_\phi-N_{\phi^\prime} (≡X\equiv X) is a new conserved charge, which is identical to Le−LΌ−LτL_e-L_\mu-L_\tau for the left-handed leptons. Charged leptons turn out to have ee-ÎŒ\mu and ee-τ\tau mixing masses, which are found to be crucial for the large solar neutrino mixing. In an extended version of the Zee model with an extra triplet Higgs scalar (s), neutrino oscillations are described by three steps: 1) the maximal atmospheric mixing is induced by democratic mass terms supplied by ss with XX=2 that can initiate the type II seesaw mechanism for the smallness of these masses; 2) the maximal solar neutrino mixing is triggered by the creation of radiative masses by h+h^+ with XX = 0; 3) the large solar neutrino mixing is finally induced by a ΜΌ\nu_\mu-Μτ\nu_\tau mixing arising from the rotation of the radiative mass terms as a result of the diagonalization that converts ee-ÎŒ\mu and ee-τ\tau mixing masses into the electron mass.Comment: RevTex, 10 pages including one figure page, to be published in Int. J. Mod. Phys. A (2002

    Comparison of the growth and leaf mineral concentrations between three grapevine rootstocks and their corresponding tetraploids inoculated with an arbuscular mycorrhizal fungus Gigaspora margarita

    Get PDF
    Effects of the arbuscular mycorrhizal (AM) fungus Gigaspora margarita BECKER and HALL on growth and leaf mineral concentrations of the tetraploid grapevine rootstocks Gloire de Montpellier (Gloire, Vitis riparia MICHX.), Rupestris St. George (St. George, V. rupestris SCHEELE), and Couderc 3309 (3309, V. riparia x V. rupestris) were compared with those of their corresponding diploids. The percentage of AM infection in the inoculated tetraploid grapevines of each rootstock was as high (above 90 %) as in the inoculated diploids. Shoot and root growth in the inoculated grapevines of each tetraploid was significantly higher than that in the non-inoculated grapevines. For the original diploid rootstocks, almost the same shoot and root growth was observed regardless of inoculation. Tetraploid and diploid rootstocks with AM fungi-inoculation had significantly higher P concentrations in the leaves than the non-inoculated grapevines, but tetraploid grapevines with AM fungi-inoculation had lower Ca and Mg concentrations. The tetraploid grapevines with thicker roots and more compact root systems were considered to depend more on arbuscular mycorrhizas than the original diploid rootstock cultivars.

    Lepton masses in a supersymmetric 3-3-1 model

    Get PDF
    We consider the mass generation for both charginos and neutralinos in a 3-3-1 supersymmetric model. We show that R-parity breaking interactions leave the electron and one of the neutrinos massless at the tree level. However the same interactions induce masses for these particles at the 1-loop level. Unlike the similar situation in the MSSM the masses of the neutralinos are related to the masses of the charginos.Comment: RevTex, 11 pages incluing 2 .eps figures. Extended published versio

    Can the Zee Model Explain the Observed Neutrino Data?

    Get PDF
    The eigenvalues and mixing angles in the Zee model are investigated parameter-independently. When we require |\Delta m^2_{12}/\Delta m^2_{23}| \ll 1 in order to understand the solar and atmospheric data simultaneously, the only solution is one which gives bi-maximal mixing. It is pointed out that the observed values \sin^2 2\theta_{solar} \simeq 0.66 in the MSW LMA solution cannot be explained within the framework of the Zee model, because we derive a severe constraint on the value of \sin^2 2 \theta_{solar}, \sin^2 2 \theta_{solar} \geq 1 -(1/16)(\Delta m^2_{solar}/\Delta m^2_{atm})^2.Comment: Latex file, 10 pages, 1 figure, explanations and references added, typos corrected, to be published in Phys.Rev.

    Escape from washing out of baryon number in a two-zero-texture general Zee model compatible with the large mixing angle MSW solution

    Full text link
    We propose a two-zero-texture general Zee model, compatible with the large mixing angle Mikheyev-Smirnov-Wolfenstein solution. The washing out of the baryon number does not occur in this model for an adequate parameter range. We check the consistency of a model with the constraints coming from flavor changing neutral current processes, the recent cosmic microwave background observation, and the Z-burst scenario.Comment: 22 pages, 2 eps figures, Type set revtex

    Bilarge Neutrino Mixing and \mu - \tau Permutation Symmetry for Two-loop Radiative Mechanism

    Full text link
    The presence of approximate electron number conservation and \mu-\tau permutation symmetry of S_2 is shown to naturally provide bilarge neutrino mixing. First, the bimaximal neutrino mixing together with U_{e3}=0 is guaranteed to appear owing to S_2 and, then, the bilarge neutrino mixing together with |U_{e3}|<<1 arises as a result of tiny violation of S_2. The observed mass hierarchy of \Delta m^2_{\odot}<<\Delta m^2_{atm} is subject to another tiny violation of the electron number conservation. This scenario is realized in a specific model based on SU(3)_L x U(1)_N with two-loop radiative mechanism for neutrino masses. The radiative effects from heavy leptons contained in lepton triplets generate the bimaximal structure and those from charged leptons, which break S_2, generate the bilarge structure together with |U_{e3}|<<1. To suppress dangerous flavor-changing neutral current interactions due to Higgs exchanges especially for quarks, this S_2 symmetry is extended to a discrete Z_8 symmetry, which also ensures the absence of one-loop radiative mechanism.Comment: 18 pages, 7 figures, to appear in Phys. Rev.

    Constraints On Radiative Neutrino Mass Models From Oscillation Data

    Get PDF
    The three neutrino Zee model and its extension including three active and one sterile species are studied in the light of new neutrino oscillation data. We obtain analytical relations for the mixing angle in solar oscillations in terms of neutrino mass squared differences. For the four neutrino case, we obtain the result sin22ξ⊙≈1−[(ΔmAtm2)2/(4ΔmLSND2Δm⊙2)]2\mathsf{sin^2 2 \theta_\odot \approx 1 - [ (\Delta m^2_{Atm})^2/(4 \Delta m^2_{LSND} \Delta m^2_\odot) ]^2}, which can accommodate both the large and small mixing scenarios. We show that within this framework, while both the SMA-MSW and the LMA-MSW solutions can easily be accommodated, it would be difficult to reconcile the LOW-QVO solutions. We also comment on the active-sterile admixture within phenomenologically viable textures.Comment: The paper has been substantially rewritten, especially in Section IV, though the basic results are unchanged. Some new references and an appendix have been adde

    Lepton Masses from a TeV Scale in a 3-3-1 Model

    Full text link
    In this work, using the fact that in 3-3-1 models the same leptonic bilinear contributes to the masses of both charged leptons and neutrinos, we develop an effective operator mechanism to generate mass for all leptons. The effective operators have dimension five for the case of charged leptons and dimension seven for neutrinos. By adding extra scalar multiplets and imposing the discrete symmetry Z9⊗Z2Z_9\otimes Z_2 we are able to generate realistic textures for the leptonic mixing matrix. This mechanism requires new physics at the TeV scale.Comment: RevTex, 13 pages. Extended version to be published in Physical Review

    A texture of neutrino mass matrix in view of recent neutrino experimental results

    Get PDF
    In view of recent neutrino experimental results such as SNO, Super-Kamiokande (SK), CHOOZ and neutrinoless double beta decay (ÎČÎČ0Îœ)(\beta\beta_{0\nu}), we consider a texture of neutrino mass matrix which contains three parameters in order to explain those neutrino experimental results. We have first fitted parameters in a model independent way with solar and atmospheric neutrino mass squared differences and solar neutrino mixing angle which satisfy LMA solution. The maximal value of atmospheric neutrino mixing angle comes out naturally in the present texture. Most interestingly, fitted parameters of the neutrino mass matrix considered here also marginally satisfy recent limit on effective Majorana neutrino mass obtained from neutrinoless double beta decay experiment. We further demonstrate an explicit model which gives rise to the texture investigated by considering an SU(2)L×U(1)YSU(2)_L\times U(1)_Y gauge group with two extra real scalar singlets and discrete Z2×Z3Z_2\times Z_3 symmetry. Majorana neutrino masses are generated through higher dimensional operators at the scale MM. We have estimated the scales at which singlets get VEV's and M by comparing with the best fitted results obtained in the present work.Comment: Journal Ref.: Phys. Rev. D66, 053004 (2002
    • 

    corecore