6,165 research outputs found
Recommended from our members
Air-Coupled Surface Wave Transmission Measurement Across A Partially Closed Surface-Breaking Crack In Concrete
Previous researchers have demonstrated that the transmission of surface waves is effective to estimate the depth of a surface-breaking crack in solids. However, most of the results were obtained using a well-defined crack (or notch) in laboratory. In fact, there is a critical gap to apply the theory to surface-breaking cracks in concrete structures subjected to external loadings where the cracks are generally ill-defined, and partially closed. In this study, the authors investigated transmission coefficients of surface waves across a partially closed surface-breaking crack in concrete subjected to monotonically increasing compressive loadings. First, a concrete beam (0.5 X 0.154 X 2.1 m(3)) having two surface-breaking cracks with various crack widths was prepared in laboratory. Second, transmission coefficients of impact-induced surface waves were measured across a surface-breaking crack in the concrete beam with increasing compressive loadings from 0 to 140kN (10% of the ultimate compressive strength of the concrete beam). External post-tensioning was used to apply the compression. For comparison purpose, sensitivity of surface wave velocity to compressive loading was also investigated. As a result, observations in this study reveal that transmission coefficient is a more sensitive acoustic parameter than phase velocity to evaluate a surface-breaking cracking in concrete subjected to compressive loadings.Civil, Architectural, and Environmental Engineerin
Nematicity as a route to a magnetic field-induced spin density wave order; application to the high temperature cuprates
The electronic nematic order characterized by broken rotational symmetry has
been suggested to play an important role in the phase diagram of the high
temperature cuprates. We study the interplay between the electronic nematic
order and a spin density wave order in the presence of a magnetic field. We
show that a cooperation of the nematicity and the magnetic field induces a
finite coupling between the spin density wave and spin-triplet staggered flux
orders. As a consequence of such a coupling, the magnon gap decreases as the
magnetic field increases, and it eventually condenses beyond a critical
magnetic field leading to a field-induced spin density wave order. Both
commensurate and incommensurate orders are studied, and the experimental
implications of our findings are discussed.Comment: 5 pages, 3 figure
Collective Action in Employment Relationships: An Analysis of Cooperative Culture
Collective action is one of the important elements in an employment relationship. The main feature of the action is that it involves cooperation between various community groups to achieve an objective. Among the main actions are collective bargaining and enterprise actions such as strikes and pickets. The element of cooperation shown by employees and employers is a form of exchange of spirit and resembles the culture of mutual cooperation among people in Southeast Asia. Based on these objectives, analysis will be done on the strike launched by the Utusan Malaysia trade union, picketing by the Malayan Railway Workers' Union (RUM) and Collective Bargaining by the Sabah Bank Workers' Union (SBEU). The results of the study show that there is a practice of mutual cooperation in collective actions carried out by workers, especially in increasing solidarity among members. In relation to that, the values of cohesion and unity can be increased which in turn has an impact on the survival of trade union
Quantitative Description of by the Hubbard Model in Infinite Dimensions
We show that the analytic single-particle density of states and the optical
conductivity for the half-filled Hubbard model on the Bethe lattice in infinite
dimensions describe quantitatively the behavior of the gap and the kinetic
energy ratio of the correlated insulator . The form of the optical
conductivity shows rising and is quite similar to the
experimental data, and the density of states shows behavior near
the band edges.Comment: 9 pages, revtex, 4 figures upon reques
Response surface methodology approach to study the influence of PEG and water in cellulose acetate dialysis membranes
Flat sheet asymmetric dialysis membranes were fabricated using phase inversion method from polymer solution consisting of cellulose acetate, acetic acid, polyethylene glycol (PEG) and distilled water. The effect of acetic acid/PEG ratio and the distilled water content in the dialysis membrane were being investigated with respect to the urea clearance performance. Response surface methodology (RSM) was used to design the experiments and analysed the results obtained. The analysis revealed that the significant factor that affects the cellulose acetate dialysis membrane performance in terms of urea clearance is the ratio of acetic acid/PEG. Dialysis membrane with higher ratio of acetic acid/PEG gives higher urea clearance percentage due to the formation of finger like macrovoids. The relation between the urea clearance and the ratio of acetic acid/PEG in the given range of 4 – 14, was a quadratic model and the mathematical model suggested could adequately describe the performance indicators within the limits mentioned
Signatures of Electronic Nematic Phase at Isotropic-Nematic Phase Transition
The electronic nematic phase occurs when the point-group symmetry of the
lattice structure is broken, due to electron-electron interactions. We study a
model for the nematic phase on a square lattice with emphasis on the phase
transition between isotropic and nematic phases within mean field theory. We
find the transition to be first order, with dramatic changes in the Fermi
surface topology accompanying the transition. Furthermore, we study the
conductivity tensor and Hall constant as probes of the nematic phase and its
transition. The relevance of our findings to Hall resistivity experiments in
the high- cuprates is discussed.Comment: 5 pages, 3 figure
Collective modes and sound propagation in a p-wave superconductor: SrRuO
There are five distinct collective modes in the recently discovered p-wave
superconductor SrRuO; phase and amplitude modes of the order parameter,
clapping mode (real and imaginary), and spin wave. The first two modes also
exist in the ordinary s-wave superconductors, while the clapping mode with the
energy is unique to SrRuO and couples to the sound
wave. Here we report a theoretical study of the sound propagation in a two
dimensional p-wave superconductor. We identified the clapping mode and study
its effects on the longitudinal and transverse sound velocities in the
superconducting state. In contrast to the case of He, there is no resonance
absorption associated with the collective mode, since in metals , where is the Fermi velocity, {\bf q} is the wave
vector, and is the frequency of the sound wave. However, the velocity
change in the collisionless limit gets modified by the contribution from the
coupling to the clapping mode. We compute this contribution and comment on the
visibility of the effect. In the diffusive limit, the contribution from the
collective mode turns out to be negligible. The behaviors of the sound velocity
change and the attenuation coefficient near in the diffusive limit are
calculated and compared with the existing experimental data wherever it is
possible. We also present the results for the attenuation coefficients in both
of the collisionless and diffusive limits at finite temperatures.Comment: RevTex, 12 pages, 2 figures, Replaced by the published versio
Interplay between Fermi surface topology and ordering in URuSi revealed through abrupt Hall coefficient changes in strong magnetic fields
Temperature- and field-dependent measurements of the Hall effect of pure and
4 % Rh-doped URuSi reveal low density (0.03 hole/U) high mobility
carriers to be unique to the `hidden order' phase and consistent with an
itinerant density-wave order parameter. The Fermi surface undergoes a series of
abrupt changes as the magnetic field is increased. When combined with existing
de Haas-van Alphen data, the Hall data expose a strong interplay between the
stability of the `hidden order,' the degree of polarization of the Fermi liquid
and the Fermi surface topology.Comment: 4 pages, 4 figures, Accepted to Phys. Rev. Let
- …