6,757 research outputs found

    Statistics of voltage fluctuations in resistively shunted Josephson junctions

    Full text link
    The intrinsic nonlinearity of Josephson junctions converts Gaussian current noise in the input into non-Gaussian voltage noise in the output. For a resistively shunted Josephson junction with white input noise we determine numerically exactly the properties of the few lowest cumulants of the voltage fluctuations, and we derive analytical expressions for these cumulants in several important limits. The statistics of the voltage fluctuations is found to be Gaussian at bias currents well above the Josephson critical current, but Poissonian at currents below the critical value. In the transition region close to the critical current the higher-order cumulants oscillate and the voltage noise is strongly non-Gaussian. For coloured input noise we determine the third cumulant of the voltage.Comment: 9 pages, 5 figure

    Quantal Brownian Motion - Dephasing and Dissipation

    Full text link
    We analyze quantal Brownian motion in dd dimensions using the unified model for diffusion localization and dissipation, and Feynman-Vernon formalism. At high temperatures the propagator possess a Markovian property and we can write down an equivalent Master equation. Unlike the case of the Zwanzig-Caldeira-Leggett model, genuine quantum mechanical effects manifest themselves due to the disordered nature of the environment. Using Wigner picture of the dynamics we distinguish between two different mechanisms for destruction of coherence. The analysis of dephasing is extended to the low temperature regime by using a semiclassical strategy. Various results are derived for ballistic, chaotic, diffusive, both ergodic and non-ergodic motion. We also analyze loss of coherence at the limit of zero temperature and clarify the limitations of the semiclassical approach. The condition for having coherent effect due to scattering by low-frequency fluctuations is also pointed out. It is interesting that the dephasing rate can be either larger or smaller than the dissipation rate, depending on the physical circumstances.Comment: LaTex, 23 pages, 4 figures, published vesio

    Irreversibility on the Level of Single-Electron Tunneling

    Get PDF
    We present a low-temperature experimental test of the fluctuation theorem for electron transport through a double quantum dot. The rare entropy-consuming system trajectories are detected in the form of single charges flowing against the source-drain bias by using time-resolved charge detection with a quantum point contact. We find that these trajectories appear with a frequency that agrees with the theoretical predictions even under strong nonequilibrium conditions, when the finite bandwidth of the charge detection is taken into account

    Electron transport through interacting quantum dots

    Full text link
    We present a detailed theoretical investigation of the effect of Coulomb interactions on electron transport through quantum dots and double barrier structures connected to a voltage source via an arbitrary linear impedance. Combining real time path integral techniques with the scattering matrix approach we derive the effective action and evaluate the current-voltage characteristics of quantum dots at sufficiently large conductances. Our analysis reveals a reach variety of different regimes which we specify in details for the case of chaotic quantum dots. At sufficiently low energies the interaction correction to the current depends logarithmically on temperature and voltage. We identify two different logarithmic regimes with the crossover between them occurring at energies of order of the inverse dwell time of electrons in the dot. We also analyze the frequency-dependent shot noise in chaotic quantum dots and elucidate its direct relation to interaction effects in mesoscopic electron transport.Comment: 21 pages, 4 figures. References added, discussion slightly extende

    Minimax estimation of the Wigner function in quantum homodyne tomography with ideal detectors

    Get PDF
    We estimate the quantum state of a light beam from results of quantum homodyne measurements performed on identically prepared pulses. The state is represented through the Wigner function, a ``quasi-probability density'' on R2\mathbb{R}^{2} which may take negative values and must respect intrinsic positivity constraints imposed by quantum physics. The data consists of nn i.i.d. observations from a probability density equal to the Radon transform of the Wigner function. We construct an estimator for the Wigner function, and prove that it is minimax efficient for the pointwise risk over a class of infinitely differentiable functions. A similar result was previously derived by Cavalier in the context of positron emission tomography. Our work extends this result to the space of smooth Wigner functions, which is the relevant parameter space for quantum homodyne tomography.Comment: 15 page

    Effect of annealing on electron dephasing in three-dimensional polycrystalline metals

    Full text link
    We have studied the effect of thermal annealing on electron dephasing times τϕ\tau_\phi in three-dimensional polycrystalline metals. Measurements are performed on as-sputtered and annealed AuPd and Sb thick films, using weak-localization method. In all samples, we find that τϕ\tau_\phi possesses an extremely weak temperature dependence as T0T \to 0. Our results show that the effect of annealing is non-universal, and it depends strongly on the amount of disorder quenched in the microstructures during deposition. The observed "saturation" behavior of τϕ\tau_\phi cannot be easily explained by magnetic scattering. We suggest that the issue of saturation can be better addressed in three-dimensional, rather than lower-dimensional, structures

    Specific heat of MgB2_2 in a one- and a two-band model from first-principles calculations

    Get PDF
    The heat capacity anomaly at the transition to superconductivity of the layered superconductor MgB2_2 is compared to first-principles calculations with the Coulomb repulsion, μ\mu^\ast, as the only parameter which is fixed to give the measured TcT_c. We solve the Eliashberg equations for both an isotropic one-band and a two-band model with different superconducting gaps on the π\pi and σ\sigma Fermi surfaces. The agreement with experiments is considerably better for the two-band model than for the one-band model.Comment: final published versio

    Nonequilibrium Electron Distribution in Presence of Kondo Impurities

    Full text link
    We study the energy relaxation of quasiparticles in voltage biased mesoscopic wires in presence of magnetic impurities. The renormalization of the exchange interaction of Kondo impurities coupled to conduction electrons is extended to the case of a nonequilibrium electron distribution, which is determined self-consistently from a Boltzmann equation with a collision term due to Kondo impurity mediated electron-electron scattering. The approach leads to predictions in quantitative agreement with recent experiments by Pothier et al. [Phys. Rev. Lett. 79, 3490 (1997)].Comment: 4 pages, 3 figure

    Cotunneling at resonance for the single-electron transistor

    Full text link
    We study electron transport through a small metallic island in the perturbative regime. Using a recently developed diagrammatic technique, we calculate the occupation of the island as well as the conductance through the transistor in forth order in the tunneling matrix elements, a process referred to as cotunneling. Our formulation does not require the introduction of a cut-off. At resonance we find significant modifications of previous theories and good agreement with recent experiments.Comment: 5 pages, Revtex, 5 eps-figure
    corecore