28,429 research outputs found

    Stellar Photometric Structures of the Host Galaxies of Nearby Type 1 Active Galactic Nuclei

    Full text link
    We present detailed image analysis of rest-frame optical images of 235 low-redshift (z≤z \leq 0.35) type 1 active galactic nuclei (AGNs) observed with the Hubble Space Telescope. The high-resolution images enable us to perform rigorous two-dimensional image modeling to decouple the luminous central point source from the host galaxy, which, when warranted, is further decomposed into its principal structural components (bulge, bar, and disk). In many cases, care must be taken to account for structural complexities such as spiral arms, tidal features, and overlapping or interacting companion galaxies. We employ Fourier modes to characterize the degree of asymmetry of the light distribution of the stars, as a quantitative measure of morphological distortion due to interactions or mergers. We examine the dependence of the physical parameters of the host galaxies on the properties of the AGNs, namely radio-loudness and the width of the broad emission lines. In accordance with previous studies, narrow-line (Hβ\beta FWHM ≤2000\leq 2000 km~s−1^{-1}) type 1 AGNs, in contrast to their broad-line (Hβ\beta FWHM >2000> 2000 km~s−1^{-1}) counterparts, are preferentially hosted in later type, lower luminosity galaxies, which have a higher incidence of pseudo-bulges, are more frequently barred, and are less morphologically disturbed. This suggests narrow-line type 1 AGNs experienced a more quiescent evolutionary history driven primarily by internal secular evolution instead of external dynamical perturbations. The fraction of AGN hosts showing merger signatures is larger for more luminous sources. Radio-loud AGNs generally preferentially live in earlier type (bulge-dominated), more massive hosts, although a minority of them appears to contain a significant disk component. We do not find convincing evidence for enhanced merger signatures in the radio-loud population.Comment: Published in ApJ

    Camera for QUasars in EArly uNiverse (CQUEAN)

    Full text link
    We describe the overall characteristics and the performance of an optical CCD camera system, Camera for QUasars in EArly uNiverse (CQUEAN), which is being used at the 2.1 m Otto Struve Telescope of the McDonald Observatory since 2010 August. CQUEAN was developed for follow-up imaging observations of red sources such as high redshift quasar candidates (z >= 5), Gamma Ray Bursts, brown dwarfs, and young stellar objects. For efficient observations of the red objects, CQUEAN has a science camera with a deep depletion CCD chip which boasts a higher quantum efficiency at 0.7 - 1.1 um than conventional CCD chips. The camera was developed in a short time scale (~ one year), and has been working reliably. By employing an auto-guiding system and a focal reducer to enhance the field of view on the classical Cassegrain focus, we achieve a stable guiding in 20 minute exposures, an imaging quality with FWHM >= 0.6" over the whole field (4.8' * 4.8'), and a limiting magnitude of z = 23.4 AB mag at 5-sigma with one hour total integration time.Comment: Accepted for publication in PASP. 26 pages including 5 tables and 24 figure

    A review of privacy-preserving human and human activity recognition

    Get PDF

    Simulation of aromatic SOA formation using the lumping model integrated with explicit gas-phase kinetic mechanisms and aerosol-phase reactions

    Get PDF
    The Unified Partitioning-Aerosol phase Reaction (UNIPAR) model has been developed to predict the secondary organic aerosol (SOA) formation through multiphase reactions. The model was evaluated with aromatic SOA data produced from the photooxidation of toluene and 1,3,5-trimethylbenzene (135-TMB) under various concentrations of NO<sub>x</sub> and SO<sub>2</sub> using an outdoor reactor (University of Florida Atmospheric PHotochemical Outdoor Reactor (UF-APHOR) chamber). When inorganic species (sulfate, ammonium and water) are present in aerosol, the prediction of both toluene SOA and 135-TMB SOA, in which the oxygen-to-carbon (O : C) ratio is lower than 0.62, are approached under the assumption of a complete organic/electrolyte-phase separation below a certain relative humidity. An explicit gas-kinetic model was employed to express gas-phase oxidation of aromatic hydrocarbons. Gas-phase products are grouped based on their volatility (6 levels) and reactivity (5 levels) and exploited to construct the stoichiometric coefficient (&alpha;<sub>i,j</sub>) matrix, the set of parameters used to describe the concentrations of organic compounds in multiphase. Weighting of the &alpha;<sub>i,j</sub> matrix as a function of NO<sub>x</sub> improved the evaluation of NO<sub>x</sub> effects on aromatic SOA. The total amount of organic matter (OM<sub>T</sub>) is predicted by two modules in the UNIPAR model: OM<sub>P</sub> by a partitioning process and OM<sub>AR</sub> by aerosol-phase reactions. The OM<sub>AR</sub> module predicts multiphase reactions of organic compounds, such as oligomerization, acid-catalyzed reactions, and organosulfate (OS) formation. The model reasonably simulates SOA formation under various aerosol acidities, NO<sub>x</sub> concentrations, humidities and temperatures. Furthermore, the OS fractions in the SOA predicted by the model were in good agreement with the experimentally measured OS fractions

    Mechanisms and biomarkers of airway epithelial cell damage in asthma: a review

    Get PDF
    Bronchial asthma is a heterogeneous disease with complex pathological mechanisms representing different phenotypes, including severe asthma. The airway epithelium is a major site of complex pathological changes in severe asthma due, in part, to activation of inflammatory and immune mechanisms in response to noxious agents. Current imaging procedures are unable to accurately measure epithelial and airway remodeling. Damage of airway epithelial cells occurs is linked to specific phenotypes and endotypes which provides an opportunity for the identification of biomarkers reflecting epithelial, and airway, remodeling. Identification of patients with more severe epithelial disruption using biomarkers may also provide personalized therapeutic opportunities and/or markers of successful therapeutic intervention. Here, we review the evidence for ongoing epithelial cell dysregulation in the pathogenesis of asthma, the sentinel role of the airway epithelium and how understanding these molecular mechanisms provides the basis for the identification of candidate biomarkers for asthma prediction, prevention, diagnosis, treatment and monitoring

    Infrared spectroscopy under multi-extreme conditions: Direct observation of pseudo gap formation and collapse in CeSb

    Full text link
    Infrared reflectivity measurements of CeSb under multi-extreme conditions (low temperatures, high pressures and high magnetic fields) were performed. A pseudo gap structure, which originates from the magnetic band folding effect, responsible for the large enhancement in the electrical resistivity in the single-layered antiferromagnetic structure (AF-1 phase) was found at a pressure of 4 GPa and at temperatures of 35 - 50 K. The optical spectrum of the pseudo gap changes to that of a metallic structure with increasing magnetic field strength and increasing temperature. This change is the result of the magnetic phase transition from the AF-1 phase to other phases as a function of the magnetic field strength and temperature. This result is the first optical observation of the formation and collapse of a pseudo gap under multi-extreme conditions.Comment: 5 pages, 3 figures, accepted for publication in Phys. Rev.

    Quantification of the pirimicarb resistance allele frequency in pooled cotton aphid (Aphis gossypii glover) samples by TaqMan SNP genotyping assay

    Full text link
    Background: Pesticide resistance monitoring is a crucial part to achieving sustainable integrated pest management (IPM) in agricultural production systems. Monitoring of resistance in arthropod populations is initially performed by bioassay, a method that detects a phenotypic response to pesticides. Molecular diagnostic assays, offering speed and cost improvements, can be developed when the causative mutation for resistance has been identified. However, improvements to throughput are limited as genotyping methods cannot be accurately applied to pooled DNA. Quantifying an allele frequency from pooled DNA would allow faster and cheaper monitoring of pesticide resistance. Methodology/Principal Findings: We demonstrate a new method to quantify a resistance allele frequency (RAF) from pooled insects via TaqMan assay by using raw fluorescence data to calculate the transformed fluorescence ratio k′ at the inflexion point based on a four parameter sigmoid curve. Our results show that k′ is reproducible and highly correlated with RAF (r >0.99). We also demonstrate that k′ has a non-linear relationship with RAF and that five standard points are sufficient to build a prediction model. Additionally, we identified a non-linear relationship between runs for k′, allowing the combination of samples across multiple runs in a single analysis. Conclusions/Significance: The transformed fluorescence ratio (k′) method can be used to monitor pesticide resistance in IPM and to accurately quantify allele frequency from pooled samples. We have determined that five standards (0.0, 0.2, 0.5, 0.8, and 1.0) are sufficient for accurate prediction and are statistically-equivalent to the 13 standard points used experimentally © 2014 Chen et al
    • …
    corecore