26 research outputs found

    Natural equilibrium states for multimodal maps

    Full text link
    This paper is devoted to the study of the thermodynamic formalism for a class of real multimodal maps. This class contains, but it is larger than, Collet-Eckmann. For a map in this class, we prove existence and uniqueness of equilibrium states for the geometric potentials tlogDf-t \log|Df|, for the largest possible interval of parameters tt. We also study the regularity and convexity properties of the pressure function, completely characterising the first order phase transitions. Results concerning the existence of absolutely continuous invariant measures with respect to the Lebesgue measure are also obtained

    Quotient Complexity of Regular Languages

    Full text link
    The past research on the state complexity of operations on regular languages is examined, and a new approach based on an old method (derivatives of regular expressions) is presented. Since state complexity is a property of a language, it is appropriate to define it in formal-language terms as the number of distinct quotients of the language, and to call it "quotient complexity". The problem of finding the quotient complexity of a language f(K,L) is considered, where K and L are regular languages and f is a regular operation, for example, union or concatenation. Since quotients can be represented by derivatives, one can find a formula for the typical quotient of f(K,L) in terms of the quotients of K and L. To obtain an upper bound on the number of quotients of f(K,L) all one has to do is count how many such quotients are possible, and this makes automaton constructions unnecessary. The advantages of this point of view are illustrated by many examples. Moreover, new general observations are presented to help in the estimation of the upper bounds on quotient complexity of regular operations

    The full renormalization horseshoe for unimodal maps of higher degree: exponential contraction along hybrid classes

    No full text
    We prove exponential contraction of renormalization along hybrid classes of infinitely renormalizable unimodal maps (with arbitrary combinatorics), in any even degree dd. We then conclude that orbits of renormalization are asymptotic to the full renormalization horseshoe, which we construct. Our argument for exponential contraction is based on a precompactness property of the renormalization operator ("beau bounds"), which is leveraged in the abstract analysis of holomorphic iteration. Besides greater generality, it yields a unified approach to all combinatorics and degrees: there is no need to account for the varied geometric details of the dynamics, which were the typical source of contraction in previous restricted proofs.Comment: 44 page

    Asymptotics for Infinite Systems of Differential Equations

    No full text

    Power spectra for deterministic chaotic dynamical systems

    Get PDF
    We present results on the broadband nature of power spectra for large classes of discrete chaotic dynamical systems, including uniformly hyperbolic (Axiom A) diffeomorphisms and certain nonuniformly hyperbolic diffeomorphisms (such as the Henon map). Our results also apply to noninvertible maps, including Collet-Eckmann maps. For such maps (even the nonmixing ones) and Holder continuous observables, we prove that the power spectrum is analytic except for finitely many removable singularities, and that for typical observables the spectrum is nowhere zero. Indeed, we show that the power spectrum is bounded away from zero except for infinitely degenerate observables. For slowly mixing systems such as Pomeau-Manneville intermittency maps, where the power spectrum is at most finitely differentiable, nonvanishing of the spectrum remains valid provided the decay of correlations is summable
    corecore