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Abstract
In the present paper we introduce a new notion of order called b-order. Then we
define a bistochasticity quadratic stochastic operator (q.s.o.) with respect to the
b-order, and call it a b-bistochastic q.s.o. We include several properties of the
b-bistochastic q.s.o. and descriptions of all b-bistochastic q.s.o. defined on a two
dimensional simplex.
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1 Introduction
The history of quadratic stochastic operators can be traced back to Bernstein’s work [].
Nowadays, scientists are interested in these operators, since they have a lot of applica-
tions, especially in population genetics [, ]. Moreover, the quadratic stochastic opera-
tors were also used as a crucial source of analysis for the study of dynamical properties
and modelings in many different fields such as biology [–], physics [, ], economics,
and mathematics [, –].

The time evolution of species in biology can be comprehended by the following situa-
tion. Let I = {, , . . . , n} be the n type of species (or traits) in a population and we denote by
x() = (x()

 , . . . , x()
n ) the probability distribution of the species in an early state of that popu-

lation and the probability of an individual in the ith species and jth species to cross-fertilize
and produce an individual from kth species (trait) to be Pij,k . Given x() = (x()

 , . . . , x()
n ), we

can find the probability distribution of the first generation, x() = (x()
 , . . . , x()

n ) by using a
total probability, i.e.

x()
k =

n∑

i,j=

Pij,kx()
i x()

j , k ∈ {, . . . , n}.

This operator is denoted by the symbol V and it is called a quadratic stochastic operator
(q.s.o.). The operator means that starting from the initial arbitrary state of probability dis-
tribution of a population, x(), then it continues to evolve to the probability distribution
of the first generation, x() = V (x()), the second generation, x() = V (x()) = V (V (x())) =
V ()(x()), and so on. Thus, the states (probabilities distribution) of the population can be
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described by the following dynamical system:

x(), x() = V
(
x()), x() = V ()(x()), x() = V ()(x()), . . . .

In other words, each q.s.o. describes the sequence of generations in terms of probability
distributions if the values of Pij,k and the distribution of the current generation are given.
In [], it is given by a self-contained exposition of the recent achievements and open
problems in the theory of the q.s.o. The main problem in the nonlinear operator theory is
to study the behavior of nonlinear operators. Nowadays, there is only a small number of
studies on dynamical phenomena on higher dimensional systems that are presently com-
prehended, even though they are very important. In the case of a q.s.o., the difficulty of
the problem depends on the given cubic matrix (Pijk)m

i,j,k=. An asymptotic behavior of the
q.s.o. even on the small dimensional simplex is complicated [, –].

The concept of majorization was established in  [] even though the idea was in-
troduced much earlier by Lorenz [], Dalton [], and Schur []. This kind of theory was
very important from an economic point of view, which resulted from the gaps in the in-
come or wealth distribution in society. Later, it led to idea of Lorenz curve and principle of
transfers. Moreover, Schur’s work on Hadamard’s determinant inequality also contributed
to the development of majorization [].

The idea of majorization kept occurring in other fields, such as chemistry and physics,
but it was attributed by different names such as ‘x is more mixed than y’, ‘x is more chaotic
than y’ and ‘x is more disordered than y’. One of the examples is given by [].

Further, Parker and Ram [] introduced a new order called majorization and they were
referring to the majorization that was popularized by Hardy, Littlewood and Polya, clas-
sical majorization. This new order opened a path for the study to generalize the theory of
majorization of Hardy et al. []. The new majorization has an advantage as compared to
the classical one since it can be defined as a partial order on sequences. While classical
majorization is not an antisymmetric order (because any sequence is majorized by any of
its permutations), it is only defined as a preorder on a sequence [].

Furthermore, one of the best known methods to solve optimization is the greedy
method. This method is preferred because of space- and time-efficiency. It also yields
crucial classes of optimization and usually provides a proper estimation to the optimal
solution. Many of the studies in greed [–] introduced special classes of optimization
problems and provided their algorithms. Matroids and greedoids modeling were used in
the past to approach greedy-solvable problems. Unfortunately there were not many prob-
lems that can be generalized. Hence, in [], it was proven that the concept of majorization
has a direct relation with the greedy method. Moreover, the same scholars also provided
good examples in solving greed problems such as continuous knapsack, storage of files on
tape, and job sequencing []. Note that Stott Parker and Prasad Ram were focussing the
descriptions of the order’s classes defined on linear systems only. Hence, we are interested
in the investigation of the case of quadratic ones.

In [] a definition of bistochastic q.s.o. was proposed in terms of classical majorization
(see []). Namely, a q.s.o. is called bistochastic (also called doubly stochastic) if V (x) ≺ x
for all x taken from the n –  dimensional simplex. In [, ], the necessary and sufficient
conditions were given for the bistochasticity of a q.s.o. In general, the descriptions of such
a kind of operators are still an open problem.
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Therefore, in the present paper, we are motivated to use majorization introduced in []
to define a bistochasticity q.s.o. In order to differentiate between the terms majorization
and classical majorization, we call majorization a b-order, while classical majorization is
called majorization only. The main goal of this paper is to describe all such kind of oper-
ators on a two dimensional simplex.

2 b-Order and b-bistochastic operators
Throughout this paper we consider the simplex

Sn– =

{
x = (x, x, . . . , xn) ∈ R

n
∣∣∣∣xi ≥ ,

n∑

i=

xi = 

}
. (.)

Define functionals Uk : Rn →R by

Uk(x, . . . , xn) =
k∑

i=

xi where k = , n – . (.)

Let x, y ∈ Sn–. We say that x is b-ordered by y (x ≤b y) if and only if Uk(x) ≤ Uk(y), for
all k ∈ {, . . . , n – }.

The introduced relation is indeed an order, i.e. it satisfies the following for any x, y, z ∈
Sn–:

(i) x ≤b x,
(ii) x ≤b y, y ≤b x �⇒ x = y,

(iii) x ≤b y, y ≤b z �⇒ x ≤b z.
Moreover, it has the following properties:

(i) One has x ≤b y if and only if λx ≤b λy for any λ > .
(ii) If x ≤b y and λ ≤ μ then λx ≤b μy.
Using the defined order, one can define the majorization []. First, recall that for any

x = (x, x, . . . , xn) ∈ Sn–, we define x[↓] = (x[], x[], . . . , x[n]), where

x[] ≥ x[] ≥ · · · ≥ x[n]

is a nonincreasing rearrangement of x. The point x[↓] is called a rearrangement of x by
nonincreasing. Take two elements, x and y, in Sn–, then it is said that an element x is
majorized by y (or y majorates x) and denoted x ≺ y (or y 
 x) if x[↓] ≤b y[↓]. We refer the
readers to [] for more information regarding to this topic. One sees that a b-order does
not require a rearrangement of x by nonincreasing.

Any operator V with V (Sn–) ⊂ Sn– is called stochastic and if V is satisfied V (x) ≤b x for
all x ∈ Sn–, then it is called b-bistochastic. The following include discussions on nonlinear
b-bistochastic operators. The simplest nonlinear operators are quadratic ones. Therefore,
we restrict ourselves to such a kind of operators.

A stochastic operator V : Sn– → Sn– is called a quadratic stochastic operator (q.s.o.) if
V has the following form:

V (x) =
n∑

i,j=

Pij,kxixj, k = , , . . . , n, x = (x, x, . . . , xn) ∈ Sn–, (.)
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where Pij,k are coefficients with the following properties:

Pij,k ≥ , Pij,k = Pji,k ,
n∑

k=

Pij,k = , i, j, k = , , . . . , n. (.)

Remark . In [] a q.s.o. was introduced and studied with the property V (x) ≺ x for
all x ∈ Sn–. Such an operator is called bistochastic. In our definition, we are taking the
b-order instead of the majorization. Note that if one takes absolute continuity instead of
the b-order, then the b-bistochastic operator reduces to a Volterra q.s.o. [–].

Let us recall some preliminaries.

Remark . Let g(x) = mx + c, then g(x) ≤  (respectively, g(x) ≥ ) for all x ∈ [, ] if and
only if c ≤  (respectively, c ≥ ) and m + c ≤  (respectively, m + c ≥ ).

Let F : Rn →R
n be a given mapping by

F(x) =
(
f(x), f(x), . . . , fn(x)

)
, x ∈R

n.

If F is differentiable, then the Jacobian of F at a point x is defined by

J
(
F(x)

)
=

⎡

⎢⎢⎣

∂f
∂x

. . . ∂f
∂xn

...
...

...
∂fn
∂x

. . . ∂fn
∂xn

⎤

⎥⎥⎦ .

A point x is called a fixed point of F if one has F(x) = x.

Definition . A fixed point x is called hyperbolic if the absolute value of every eigen-
value λ of the Jacobian at x satisfies |λ| �= . Let x be a hyperbolic fixed point, then

. x is called attractive if every eigenvalue of the Jacobian eigenvalues satisfies |λ| < ;
. x is called repelling if every eigenvalue of the Jacobian eigenvalues satisfies |λ| > .

Let us define
(i) xk = (, , . . . , ︸ ︷︷ ︸

k

, 
n–k , 

n–k , . . . , 
n–k ), where k = {, . . . , n – },

(ii) em = (, , . . . , , ︸ ︷︷ ︸
m

, , . . . , ), m ∈ {, . . . , n}.

3 Properties of b-bistochastic q.s.o.
In this section, we provide some basic properties of a b-bistochastic q.s.o. in a general
setting. In the following, we need an auxiliary result.

Lemma . The inequality

Ax + · · · + Anxn + C ≤  (.)

holds under the condition  ≤ x + · · · + xn ≤ , xk ≥ , k ∈ {, . . . , n} if and only if
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(i) C ≤  and
(ii) Ak + C ≤ , k = , n.

The proof is obvious.
Now we are ready to formulate several properties of a b-bistochastic q.s.o.

Theorem . Let V be a b-bistochastic q.s.o. defined on Sn–, then the following statements
hold:

(i)
∑k

m=
∑n

i,j= Pij,m ≤ kn, k ∈ {, . . . , n};
(ii) Pij,k =  for all i, j ∈ {k + , . . . , n} where k ∈ {, . . . , n – };

(iii) Pnn,n = ;
(iv) for every x ∈ Sn– one has

V (x)k =
k∑

l=

Pll,kx
l + 

k∑

l=

n∑

j=l+

Plj,kxlxj where k = , n – ,

V (x)n = x
n +

n–∑

l=

Pll,nx
l + 

n–∑

l=

n∑

j=l+

Plj,nxlxj;

(v) Plj,l ≤ 
 for all j ≥ l + , l ∈ {, . . . , n – }.

Proof (i) Consider the element x = ( 
n , 

n , . . . , 
n ), then, due to the b-bistochastisity of V ,

we have Uk(V (x)) ≤ Uk(x), for every k = , n. Taking into account

V (x)m =


n

n∑

i,j=

Pij,m for m = , n,

one gets

k∑

m=


n

n∑

i,j=

Pij,m ≤ k
n

.

This implies

k∑

m=

n∑

i,j=

Pij,m ≤ kn.

(ii) Now, take xk . Then from the fact V (xk) ≤b xk , one finds V (xk)m =  for all m = , k.
This implies that


(n – k)

n∑

i,j=k+

Pij,k ≤ .

Hence, Pij,k = , for all i, j ∈ {k + , . . . , n}, where k = , n – .
The proof of (iii) is evident.
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(iv) By using property (ii) for each k ∈ {, . . . , n – } we have

V (x)k = P,kx
 +

n∑

j=

Pj,kxxj +
n∑

i=

Pi,kxix + · · ·+ Pkk,kx
k +

n∑

j=k+

Pkj,kxkxj +
n∑

i=k+

Pik,kxixk .

From Pij,k = Pji,k , one finds

V (x)k =
k∑

l=

Pll,kx
l + 

k∑

l=

n∑

j=l+

Plj,kxlxj, k = , n – .

If k = n, then by the same argument, we get

V (x)n = x
n +

n–∑

l=

Pll,nx
l + 

n–∑

l=

n∑

j=l+

Plj,nxlxj.

(v) For each l ∈ {, . . . , n – }, let us consider the vector yl = (, , . . . , ︸ ︷︷ ︸
l–

, yl, . . . , yn) belong-

ing to Sn–. The b-bistochasticity implies that V (yl)k =  for all k ∈ {, . . . , l – }, and hence
V (yl)l ≤ yl . Due to property (iv), the last inequality reduces to

yl

(
Pll,lyl + 

n∑

j=l+

Plj,lyj – 

)
≤ ,

which yields

Pll,lyl + 
n∑

j=l+

Plj,lyj –  ≤ . (.)

Since yl ∈ Sn–, we have yl =  –
∑n

j=l+ yj and (.) becomes

n∑

j=l+

(Plj,l – Pll,l)yj + Pll,l –  ≤ .

Now, by Lemma . one finds that Plj,l ≤ 
 .

This completes the proof. �

By Vb we denote the set of all b-bistochastic q.s.o.

Proposition . The set Vb is convex.

Proof Take any λ ∈ [, ] and V, V ∈ Vb. Then from the b-bistochasticity of V and V

one finds that

λ

k∑

m=

V(x)m ≤ λ

k∑

m=

xm, ( – λ)
k∑

m=

V(x)m ≤ ( – λ)
k∑

m=

xm,

x = (x, . . . , xn) ∈ Sn–.
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The last expression yields

λ

k∑

m=

V(x)m + ( – λ)
k∑

m=

V(x)m ≤
k∑

m=

xm,

which means that λV + ( – λ)V ∈ Vb. The proof is completed. �

4 Limiting behavior of b-bistochastic q.s.o.
In this section, we are going to study the limiting behavior of a b-bistochastic q.s.o.

Theorem . Let V be a b-bistochastic q.s.o. defined on Sn–, then for every x ∈ Sn– the
limit limm→∞ V (m)(x) exists.

Proof It is clear that V (m)(x) = (V (m)(x), . . . , V (m)(x)n), therefore, it is enough for us to show
that the limit of V (m)(x)k exists, for each k ∈ {, . . . , n}. We prove by induction. First, con-
sider k = . Then, by the definition of a b-bistochastic q.s.o., we obtain

U
(
V (m+)(x)

)≤ U
(
V (m)(x)

)
for all m ∈N.

This implies that the sequence {U(V (m)(x))} is a monotone decreasing. Due to the
boundedness of U(V (m)(x)), we conclude the existence of the limit limm→∞ U(V (m)(x)).
This implies that

lim
m→∞ V (m)(x)

exists.
Next, assume that the limits limm→∞ V (m)(x)i exist for every i ∈ {, . . . , k}. Now, we will

prove the limit limm→∞ V (m)(x)k+ exists as well. Again, from the b-bistochasticity we infer
that the sequence {Uk+(V (m)(x))} is monotone decreasing, and it is bounded. Therefore,

lim
m→∞

k+∑

i=

V (m)(x)i

exists. From the assumption, one concludes the existence of the limit

lim
m→∞ V (m)(x)k+.

This completes the proof. �

Corollary . Let V be a b-bistochastic q.s.o. on Sn–, and let limm→∞ V m(x) = x, then x
is a fixed point of V .

Proposition . Let V be a b-bistochastic q.s.o., then x = (, , . . . , ) is its fixed point.

Proof Let x = (, , . . . , ), then

V (x)m =  for m = , n – ,
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Hence one has V (x)n = . Consequently, V (, , . . . , ) = (, , . . . , ). This proves the propo-
sition. �

In order to study the dynamics of a b-bistchastic q.s.o., it is important for us to investigate
the behavior of the fixed point (, . . . , , ). Using the substitution

x = (x, . . . , xn) �⇒ x =
(
x, . . . ,  – (x + · · · + xn–)

)

we restrict ourselves to consider the first n– coordinates of V . In this case, the fixed point
found above is reduced to x = (, , . . . , ). Moreover, using property (iv) in Theorem .
and replacing xn =  – (x + · · · + xn–) one can find

V (x)k =
k∑

l=

Pll,kx
l + 

k∑

l=

n–∑

j=l+

Plj,kxlxj + 
k∑

i=

Pin,kxi – 
n–∑

j=

k∑

i=

Pin,kxixj, k = , n – .

From the last expression, we immediately get the following lemma.

Lemma . Let V be the b-bistochastic q.s.o. given by (.). If m ≤ k, then

∂V (x)k

∂xm
= 

m∑

i=

Pim,kxi + 
n–∑

j=m+

Pmj,kxj + Pmn,k – 
n–∑

j=

Pmn,kxj,

if m > k, then

∂V (x)k

∂xm
= 

[ k∑

i=

(Pim,k – Pin,k)xi

]
.

Next, let us compute the Jacobian at the fixed point

J
[
V (, , . . . , )

]
=

⎡

⎢⎢⎢⎢⎣

Pn,  . . . 
Pn, Pn, . . . 

...
...

. . .
...

Pn,n– Pn,n– . . . Pn–n,n–

⎤

⎥⎥⎥⎥⎦
.

Thus, the eigenvalues of J(V (, , . . . , )) are {Pkn,k}n–
k= . The fascinating part of this result

is shown below.

Theorem . The fixed point (, , . . . , ) is not repelling.

Proof Due to property (v) of Theorem ., we have

Pkn,k ≤ 


for k = , n – .

This proves that all the eigenvalues of J[V (, , . . . , )] are less than or equal to , so
(, , . . . , ) is not repelling. �
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Corollary . If Plj,l < 
 for all l ∈ {, . . . , n–}, j ≥ l +, then the fixed point x = (, , . . . , )

is attracting.

From the results, it is natural to ask the following question: Is there a trajectory of a
b-bistochastic q.s.o. which converges to a fixed point different from (, , . . . , )?

We want to consider this question in a one dimensional setting.
Let us denote by Fix(V ) the set of all fixed points of V belonging to the simplex Sn–.
Let V be a b-bistochastic q.s.o. defined on one dimensional simplex, then by using The-

orem ., one gets

P, = , P, = , and P, ≤ 


,

and we denote

P, = a and P, = b.

Note that V can be reduced to V (x) = ax + bx( – x), x ∈ [, ].
The following theorem describes the limiting behavior of a b-bistochastic on a one di-

mensional setting.

Theorem . Let V be a b-bistochastic q.s.o. defined on S and let x = (x, y) ∈ S, then one
has

Fix(V ) =

⎧
⎪⎨

⎪⎩

{} if a �= ,
{, } if a = , b �= 

 ,
{x} : x ∈ [, ] if a = , b = 

 .

Moreover,

lim
m→∞ V (m)(x) =

{
{} if a �=  or {a = , b �= 

 } for x �= ,
{x} if a = , b = 

 .

Proof The fixed points of V (x) = x are x =  and x = –b
a–b . From this, it easy to see that

Fix(V ) =

{
{} if a �= ,
{, } if a = , b �= 

 .

Next, if a =  and b = 
 , then V (x) = x, thus all points of [, ] are fixed i.e.

Fix(V ) =
{
{x} : x ∈ [, ], if a = , b =




}
.

Furthermore, using Corollary ., we know that the limit of b-bistochasticity converges
to a fixed point, thus we need to consider several cases.

Case . If a �= , then one has a unique fixed point. Therefore, due to Corollary . one
finds

lim
m→∞ V (m)(x) = .
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Case . If a =  and b �= 
 , then we have two possible fixed points. We need to compute

the derivative of V (x) and find its modulus at each fixed point. Namely,

∣∣V ′()
∣∣ = b <  and

∣∣V ′()
∣∣ = ( – b) > .

This implies that the fixed point  is attracting, while  is repelling. Hence,

lim
m→∞ V (m)(x) =  if a �=  or

{
a = , b �= 



}
for x �= .

Case . If a =  and b = 
 , then one obviously gets limm→∞ V (m)(x) = x.

This completes the proof. �

5 Description of b-bistochastic q.s.o. on 2D simplex
In this section we are going to describe all b-bisochastic q.s.o. defined on a two dimen-
sional simplex. Before doing that, we need the following auxiliary facts.

Lemma . Let f (x) = ax + bx + c, then f (x) ≤  for all x ∈ [, ] if and only if c ≤ ,
a + b + c ≤ , and one of the following conditions is satisfied:

(I) a ≥ ;
(II) a <  and one of the following is satisfied:

(i) b ≤ ;
(ii) b ≥ –a;

(iii) b – ac ≤ .

Lemma . Let f (x, y) = Ax + By + Cxy + Dx + Ey and D = {(x, y)| ≤ x + y ≤ }. Assume
that f (x, y) ≤  on the boundaries (i.e. x = , y = , and y =  – x). Then the following state-
ments hold:

(I) Let the critical point (x, y) belongs to D, then
(i) if (x, y) is a maximum point and f (x, y) ≤ , then f (x, y) ≤  for all x, y ∈D;

(ii) if (x, y) is a saddle point and f (x, y) ≤ , then f (x, y) ≤  for all x, y ∈D;
(iii) if (x, y) is a minimum point, then f (x, y) ≤  for all x, y ∈D.

(II) Let (x, y) /∈D, then one has f (x, y) ≤  for all x, y ∈D.

The proof immediately follows from the fact that the given function is either paraboloid
or saddle roof. Note that in (II) g reaches its maximum on the boundaries.

Now let us consider a q.s.o. V defined on S. For the sake of simplicity we denote

P, = A, P, = C, P, = E,

P, = A, P, = C, P, = E,

P, = B, P, = D, P, = F,

P, = B, P, = D, P, = F,

(.)

and

M =  – C – C, N = D – E, P =  – E,
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Q = B + B – C – C – E, R = (A + A – C – C),

K = 
(
RN – Q), a = A + A + D – B – B,

b = B + B – D, c = D – .

The main result of this paper is the following theorem.

Theorem . Let V : S → S be a q.s.o., then V is a b-bistochastic if and only if
(i) F = E = D = F = ;

(ii) B ≤ 
 , C ≤ 

 , E ≤ 
 ;

(iii) C + C ≤ 
 ,

and one of the following is satisfied:
(I) a ≥ ;

(II) a <  and one of the following is satisfied:
() b ≤ ;
() b ≥ –a;
() b – ac ≤ .

Proof One can see that the b-bistochasticity of V implies

V (x) ≤ x; (.)

V (x) + V (x) ≤ x + x, (.)

for all x = (x, x, x) ∈ S.
The conditions (i) and (ii) immediately follow from Theorem ., which are equivalent

to (.).
Next, we let

g(x, x) = x
 (A + A – C – C) + x

(D – E) + x(C + C – )

+ x(E – ) + xx(B + B – C – C – E).

One can see that (.) is equivalent to

g(x, x) ≤  (.)

for all (x, x) with  ≤ x + x ≤ . Here we have used x =  – x – x.
First, using the fact g(x, x) is not linear, we need to investigate g for its extremums on

the boundaries (i.e. Side : x = , Side : x =  and Side : x =  – x) first and then in the
internal region. So, we are going to study the function g on each side one by one.

Side . Let x = , then g(, x) = x
(D – E) + x(E – ). Therefore, (.) reduces to

x(D – E) + E –  ≤ ,

which is obviously true (see conditions (i) and (ii)).
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Side . In this case, x = . Here, g(x, ) = x
 (A + A – C – C) + x(C + C – ).

Clearly, (.) becomes

x(A + A – C – C) + (C + C – ) ≤ .

Hence, from Remark . one finds

C + C ≤ 


,

which implies the condition (iii).
Side . Consider the boundary x =  – x, thus

g(x,  – x) = x
 (A + A + D – B – B) + x(B + B – D) + D – .

If x =  and x = , then one immediately gets D –  ≤  and A + A ≤ , respectively,
which are evidently true. Moreover, g can be written as follows:

g(x) = ax
 + bx + c.

By Lemma ., one infers that one of the following conditions must be satisfied:
(I) a ≥ ;

(II) a <  and one of the following is satisfied to meet (.):
() b ≤ ;
() b ≥ –a;
() b – ac ≤ .

Now we consider the internal region i.e. D = {(x, x)| ≤ x + x ≤ }.
Internal region. In this case, g(x, x) can be written as follows:

g(x, x) = x
 R + x

N – xM – xP + xxQ.

First, let us compute its partial derivatives

gx = xR – M + xQ, gx = xN – P + xQ,

gxx = R, gxx = N , gxx = Q.
(.)

It is clear that the critical point (i.e. a solution of gx = , gx = ) is the following one:

(x, x) =
(

MN – PQ
K

,
PR – MQ

K

)
,

by assuming K = (RN – Q) �= .
Recall that the critical point is
(a) a maximum point if gxx <  and gxx gxx – (gxx ) > ;
(b) a minimum point if gxx >  and gxx gxx – (gxx ) > ;
(c) a saddle point if gxx gxx – (gxx ) < .
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Furthermore, in order to cover all possible values of R, N , and Q that they shall take, we
examine several cases:

Case I: R >  and RN – Q > ;
Case II: R <  and RN – Q > ;
Case III: RN < ;
Case IV: RN >  and RN – Q < ;
Case V: R = ;
Case VI: N = ;
Case VII: Q = ;
Case VIII: RN – Q = .
We want to highlight that the values of P and M are positive due to (ii) and (iii). The

investigation of each case is done separately.
Case I. Assume that R >  and RN – Q > , then one immediately gets the critical point

is minimum. Due to Lemma . we get g ≤ . Correspondingly, (.) is true in this case.
Case II. Let R <  and RN –Q > . Consequently, we see that N <  and the critical point

is maximum. Here, one should consider two subcases: the critical point is either outside
or inside the region D. If it is outside, then Lemma . implies (.). Now, we consider the
critical point is inside the region D, which means

 < MN – PQ < K ,  < PR – MQ < K .

It implies the positivity of K (i.e. K = (RN – Q) > ). Due to MN <  and P >  one finds
Q < . Furthermore, by substituting the maximum point into the function g , we obtain

g(x, x) =
(MN – PQ)R

K +
(PR – MQ)N

K –
(MN – PQ)M

K

–
(PR – MQ)P

K
+ 

(MN – PQ)(PR – MQ)Q
K . (.)

Observe that at the maximum point g ≤ . Therefore, from Lemma ., it follows that
g(x, x) ≤  for all (x, x) ∈ D.

Case III. Consider RN < . This means that RN – Q ≤ . Hence, the critical point is
saddle. Using the same argument as in Case II, it is enough for us to consider the case
when the saddle point is inside the region. Consequently, one has

K < MN – PQ < , (.)

K < PR – MQ < . (.)

Without loss of generality, one may assume that R >  and N < . Moreover, (.) implies
that Q > . Next, let us compute the value of g at the saddle point, which is (.). Taking
into account K = (RN – Q), then

g(x, x) =
MN + PR – MPQ

–(RN – Q)
.

In fact, P(PR – MQ) <  implies g(x, x) ≤ . This means g(x, x) ≤  for all (x, x) ∈ D,
hence it proves (.) (see Lemma .).
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Case IV. Let RN >  and RN – Q < . By a similar method to Case III, one proves that
(.) holds.

Case V. Let R = , then we have three subcases, which are N = , N > , and N < . First,
we may assume N = , then g reduces to g(x, x) = –xM – xP + xxQ. From (.) one
can see that a unique solution of gx =  and gx =  is

(x, x) =
(

P
Q

,
M
Q

)
for Q �= .

In this case, the critical point is saddle since gxx gxx – (gxx ) = –Q < . By a similar
argument to Case III, it is sufficient to check when the critical point is inside the region D.
This means  < P < Q and  < M < Q. Consequently, one gets Q >  and finds

g
(

P
Q

,
M
Q

)
=

–PM
Q

< .

Thus, we obtain (.) (see the argument in Case III). Note that if Q = , then it is clear
g(x, x) ≤  for all (x, x) ∈ D.

The second subcase is N > . Evidently g(x, x) = x
N – xM – xP + xxQ. According

to (.), the critical point is

(x, x) =
(

PQ – MN
Q ,

M
Q

)
for Q �= .

In fact, gxx gxx – (gxx ) = –Q < , thus the critical point is a saddle point. Hence,
one may continue the proof as in the first subcase. Moreover, conditions Q =  and R = 
imply M =  (solution gx = ). Hence, from gx = , one gets x = P

N and substituting it
into g(x, x), we find

g
(

x,
P

N

)
=

P

N
–

P

N
≤  for any (x, x) ∈ D.

The last subcase N <  may proceed in a similar manner.
Case VI. We let N =  and the proof is analogous to Case V.
Case VII. If Q = , then one finds g(x, x) = x

 R + x
N – xM – xP. Correspondingly,

the critical point is

(x, x) =
(

M
R

,
P

N

)
for R �= , N �= .

Positivity of x and x implies R >  and N > , respectively. Consequently, gxx gxx –
(gxx ) = RN > , which means that the critical point is maximum. Using Lemma .,
obviously, it is sufficient for us to check the value g takes at the critical point when it is
inside the region D. Accordingly, we get

g
(

M
R

,
P

N

)
=

MN + PR
–RN

< .

Again, using Lemma ., one concludes that (.) holds. In addition, whenever R =  or
N =  or both hold, then the proof follows by the same method as Case V (subcase Q = ).
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Case VIII. In the last case, we let MN – Q = . It is clear that we have x(Q – NR) =
MQ – PR and x(RN – Q) = MN – PQ. This gives us MQ – PR =  and MN – PQ =  or
otherwise gx =  and gx =  do not have any solution (i.e. the critical point). Therefore,
the maximum is reached on the boundaries, which gives g(x, x) ≤  for all (x, x) ∈ D

(see the investigations on Side , Side , and Side ).
On the other hand, if MQ – PR =  and MN – PQ = , then one has infinitely many

solutions. Using the fact M ≥  and P ≥ , then we have two possible subcases, which are
(i) N < , Q < , R <  and (ii) N > , Q > , R > . Taking into account the first subcase (i)
and the argument in the Case II, one infers that g(x, x) ≤  for all (x, x) ∈ D.

(ii) Next, if MN – Q = , then the equations gx =  and gx =  are linearly dependent.
Thus, it is enough to consider gx = . Obviously, one finds x = M–xQ

R . Substituting x

into g(x, x), then

g
(

M – xQ
R

, x

)
=

–M
R

+ (MQ – PR)x +
(
RN – Q)x

 =
–M
R

.

This shows that g(x, x) ≤  for all (x, x) ∈D.
Briefly, we show that for all cases in the internal region, g(x, x) ≤  for all (x, x) ∈ D.

In addition, the reverse can be proved by the same way. This completes the proof. �

Remark . Note that such a kind of description of a bistochastic q.s.o. is not known in
the literature. Our result fully describes all b-bistochasic q.s.o. on a two dimensional set-
ting. The theorem proved allows one to find all extreme points of the set of a b-bistochastic
q.s.o. on D simplex, which can be considered as one of the future studies that can be done.
Moreover, it gives insight in and preliminary information on the direction of a higher di-
mensional setting.
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