1,029 research outputs found
Transition from Ferromagnetism to Antiferromagnetism in GaMnN
Using density functional theory, we study the magnetic stability of the
GaMnN alloy system. We show that unlike GaMnAs, which
shows only ferromagnetic (FM) phase, GaMnN can be stable in either
FM or antiferromagnetic phases depending on the alloy concentration. The
magnetic order can also be altered by applying pressure or with charge
compensation. A unified model is used to explain these behaviors.Comment: 4 pages, 4 figure
Shallow Triple Stream Three-dimensional CNN (STSTNet) for Micro-expression Recognition
In the recent year, state-of-the-art for facial micro-expression recognition
have been significantly advanced by deep neural networks. The robustness of
deep learning has yielded promising performance beyond that of traditional
handcrafted approaches. Most works in literature emphasized on increasing the
depth of networks and employing highly complex objective functions to learn
more features. In this paper, we design a Shallow Triple Stream
Three-dimensional CNN (STSTNet) that is computationally light whilst capable of
extracting discriminative high level features and details of micro-expressions.
The network learns from three optical flow features (i.e., optical strain,
horizontal and vertical optical flow fields) computed based on the onset and
apex frames of each video. Our experimental results demonstrate the
effectiveness of the proposed STSTNet, which obtained an unweighted average
recall rate of 0.7605 and unweighted F1-score of 0.7353 on the composite
database consisting of 442 samples from the SMIC, CASME II and SAMM databases.Comment: 5 pages, 1 figure, Accepted and published in IEEE FG 201
Who is in charge and whose rules are followed..?: Power in a inter-organisational IS project
While Enterprise Resource Planning (ERP) system demand in China has been steadily increasing,
many of such implementation projects failed. Keda Industrial Co. Ltd (600986: Shanghai Stock
Exchange), a manufacturer of large scale machinery in China, however, was one of the few that
successfully deployed its ERP solution in 2005. In this case study, we document the ERP initiative of
Keda from its conception to its deployment, study the factors that contributed to its success, and
summarize Keda’s practices that substantiated the identified success factors
Evaluating and comparing fault-based testing strategies for general Boolean specifications: A series of experiments
A great amount of fault-based testing strategies have been proposed to generate test cases for detecting certain types of faults in Boolean specifications. However, most of the previous studies on these strategies were focused on the Boolean expressions in the disjunctive normal form (DNF), even the irredundant DNF (IDNF)-little work has been conducted to comprehensively investigate their performance on general Boolean specifications. In this study, we conducted a series of experiments to evaluate and compare 18 fault-based testing strategies using over 4000 randomly generated fault-seeded Boolean expressions. In the experiments, a testing strategy is regarded as effective and efficient if it can detect most of the seeded faults using a small number of test cases. Our experimental results show that if a testing strategy is highly effective and efficient when testing the Boolean expressions in the IDNF, it also shows high effectiveness and efficiency on general Boolean expressions. It is found that one family of fault-based testing strategies, namely MUMCUT, normally deliver the best performance among all the 18 strategies. Our study provides an in-depth understanding and insight of fault-based testing for general Boolean expressions
Automated Testing of WS-BPEL Service Compositions: A Scenario-Oriented Approach
Nowadays, Service Oriented Architecture (SOA) has become one mainstream paradigm for developing distributed applications. As the basic unit in SOA, Web services can be composed to construct complex applications. The quality of Web services and their compositions is critical to the success of SOA applications. Testing, as a major quality assurance technique, is confronted with new challenges in the context of service compositions. In this paper, we propose a scenario-oriented testing approach that can automatically generate test cases for service compositions. Our approach is particularly focused on the service compositions specified by Business Process Execution Language for Web Services (WS-BPEL), a widely recognized executable service composition language. In the approach, a WS-BPEL service composition is first abstracted into a graph model; test scenarios are then derived from the model; finally, test cases are generated according to different scenarios. We also developed a prototype tool implementing the proposed approach, and an empirical study was conducted to demonstrate the applicability and effectiveness of our approach. The experimental results show that the automatic scenario-oriented testing approach is effective in detecting many types of faults seeded in the service compositions
The mechanism of the polarization dependence of the optical transmission in subwavelength metal hole arrays
We investigate the mechanism of extraordinary optical transmission in
subwave-length metal hole arrays. Experimental results for the arrays
consisting of square or rectangle holes are well explained about the dependence
of transmission strength on the polarization direction of the incident light.
This polarization dependence occurs in each single-hole. For a hole array,
there is in addition an interplay between the adjacent holes which is caused by
the transverse magnetic field of surface plasmon polariton on the metal film
surfaces. Based on the detailed study of a single-hole and two-hole structures,
a simple method to calculate the total tranmissivity of hole arrays is
proposed.Comment: 34 pages, 7 figure
Analysis of Artifactual Components Rejection Threshold towards Enhanced Characterization of Neural Activity in Post-Stroke Survivor
Research advancement has spurred the usage of electroencephalography (EEG)-based neural oscillatory rhythms as a biomarker to complement clinical rehabilitation strategies for motor skill recovery in stroke patients. However, the inevitable contamination of EEG signals with artifacts from various sources limits its utilization and effectiveness. Thus, the integration of Independent Component Analysis (ICA) and Independent Component Label (ICLabel) has been widely employed to separate neural activity from artifacts. A crucial step in the ICLabel preprocessing pipeline is the artifactual ICs rejection threshold (TH) parameter, which determines the overall signal's quality. For instance, selecting a high TH will cause many ICs to be rejected, thereby leading to signal over cleaning, and choosing a low TH may result in under-cleaning of the signal. Toward determining the optimal TH parameter, this study investigates the effect of six different TH groups (NO-TH and TH1-TH6) on EEG signals recorded from post-stroke patients who performed four distinct motor imagery tasks including wrist and grasping movements. Utilizing the EEG-beta band signal at the brain's sensorimotor cortex, the performance of the TH groups was evaluated using three notable EEG quantifiers. Overall, the obtained result shows that the considered THs will significantly alter neural oscillatory patterns. Comparing the performance of the TH-groups, TH-3 with a confidence level of 60% showed consistently stronger signal desynchronization and lateralization. The correlation result shows that most of the electrode pairs with high correlation values are replicable across all the MI tasks. It also revealed that brain activity correlates linearly with distance, and a strong correlation between electrode pairs is independent of the different brain cortices
Effects of Lattice and Molecular Phonons on Photoinduced Neutral-to-Ionic Transition Dynamics in Tetrathiafulvalene--Chloranil
For electronic states and photoinduced charge dynamics near the neutral-ionic
transition in the mixed-stack charge-transfer complex
tetrathiafulvalene--chloranil (TTF-CA), we review the effects of Peierls
coupling to lattice phonons modulating transfer integrals and Holstein
couplings to molecular vibrations modulating site energies. The former
stabilizes the ionic phase and reduces discontinuities in the phase transition,
while the latter stabilizes the neutral phase and enhances the discontinuities.
To reproduce the experimentally observed ionicity, optical conductivity and
photoinduced charge dynamics, both couplings are quantitatively important. In
particular, strong Holstein couplings to form the highly-stabilized neutral
phase are necessary for the ionic phase to be a Mott insulator with large
ionicity. A comparison with the observed photoinduced charge dynamics indicates
the presence of strings of lattice dimerization in the neutral phase above the
transition temperature.Comment: 9 pages, 7 figures, accepted for publication in J. Phys. Soc. Jp
Phase Transition in a One-Dimensional Extended Peierls-Hubbard Model with a Pulse of Oscillating Electric Field: I. Threshold Behavior in Ionic-to-Neutral Transition
Photoinduced dynamics of charge density and lattice displacements is
calculated by solving the time-dependent Schr\"odinger equation for a
one-dimensional extended Peierls-Hubbard model with alternating potentials for
the mixed-stack organic charge-transfer complex, TTF-CA. A pulse of oscillating
electric field is incorporated into the Peierls phase of the transfer integral.
The frequency, the amplitude, and the duration of the pulse are varied to study
the nonlinear and cooperative character of the photoinduced transition. When
the dimerized ionic phase is photoexcited, the threshold behavior is clearly
observed by plotting the final ionicity as a function of the increment of the
total energy. Above the threshold photoexcitation, the electronic state reaches
the neutral one with equidistant molecules after the electric field is turned
off. The transition is initiated by nucleation of a metastable neutral domain,
for which an electric field with frequency below the linear absorption peak is
more effective than that at the peak. When the pulse is strong and short, the
charge transfer takes place on the same time scale with the disappearance of
dimerization. As the pulse becomes weak and long, the dimerization-induced
polarization is disordered to restore the inversion symmetry on average before
the charge transfer takes place to bring the system neutral. Thus, a
paraelectric ionic phase is transiently realized by a weak electric field. It
is shown that infrared light also induces the ionic-to-neutral transition,
which is characterized by the threshold behavior.Comment: 24 pages, 11 figure
HiTrust: building cross-organizational trust relationship based on a hybrid negotiation tree
Small-world phenomena have been observed in existing peer-to-peer (P2P) networks which has proved useful in the design of P2P file-sharing systems. Most studies of constructing small world behaviours on P2P are based on the concept of clustering peer nodes into groups, communities, or clusters. However, managing additional multilayer topology increases maintenance overhead, especially in highly dynamic environments. In this paper, we present Social-like P2P systems (Social-P2Ps) for object discovery by self-managing P2P topology with human tactics in social networks. In Social-P2Ps, queries are routed intelligently even with limited cached knowledge and node connections. Unlike community-based P2P file-sharing systems, we do not intend to create and maintain peer groups or communities consciously. In contrast, each node connects to other peer nodes with the same interests spontaneously by the result of daily searches
- …