
  

 

Abstract— Research advancement has spurred the usage of 
electroencephalography (EEG)-based neural oscillatory 

rhythms as a biomarker to complement clinical rehabilitation 
strategies for motor skill recovery in stroke patients. However, 
the inevitable contamination of EEG signals with artifacts from 

various sources limits its utilization and effectiveness. Thus, the 
integration of Independent Component Analysis (ICA) and 
Independent Component Label (ICLabel) has been widely 

employed to separate neural activity from artifacts. A crucial 
step in the ICLabel preprocessing pipeline is the artifactual ICs 
rejection threshold (TH) parameter, which determines the 

overall signal's quality. For instance, selecting a high TH will 
cause many ICs to be rejected, thereby leading to signal over-
cleaning, and choosing a low TH may result in under-cleaning of 

the signal. Toward determining the optimal TH parameter, this 
study investigates the effect of six different TH groups (NO-TH 
and TH1-TH6) on EEG signals recorded from post-stroke 

patients who performed four distinct motor imagery tasks 
including wrist and grasping movements. Utilizing the EEG-beta 
band signal at the brain's sensorimotor cortex, the performance 

of the TH groups was evaluated using three notable EEG 
quantifiers. Overall, the obtained result shows that the 
considered THs will significantly alter neural oscillatory 

patterns. Comparing the performance of the TH-groups, TH-3 
with a confidence level of 60% showed consistently stronger 
signal desynchronization and lateralization. The correlation 

result shows that most of the electrode pairs with high 
correlation values are replicable across all the MI tasks. It also 
revealed that brain activity correlates linearly with distance, and 

a strong correlation between electrode pairs is independent of 
the different brain cortices. 
 

Clinical Relevance: This study indicated that optimal selection of 
the ICLabel artifactual rejection threshold is essential for EEG 
enhancement for adequate signal characterization. Thus, a TH-

values with a confidence level between 50% - 70% would be 
suggested for artifactual ICs rejection in EEG. 

 

I. INTRODUCTION 

Recent development in stroke rehabilitation has brought 
about the use of brain oscillatory patterns as potential 
biomarkers for recovery prediction and treatment response in 
post-stroke survivors. Also, existing works have established 
that the fusion of motor system modulation and rehabilitation 
strategies further aids the recovery process in upper limb post-
stroke survivors [4-6]. Over the years, EEG 
(Electroencephalography) neuroimaging technique has been 
widely utilized to measure/ quantify motor response in the 

 
The research work was supported in part by the Ministry of Science and Technology 

of China under grants (STI2030-Brain Science and Brain-Inspired Intelligence 

Technology-2022ZD0210400), National Natural Science Foundation of China under 

grant (#62150410439), Basic Research Project of Shenzhen Science, Technology and 

Innovation Commission (#JCYJ20210324123414039), and The Scientific Research 

Projects of Medical and Health Institutions of Longhua District, Shenzhen（#2020040). 

M.G. Asogbon, O.W. Samuel, Z.X Jing, Y.X Ma, G. Li and Y.C Li are with the CAS 

Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes 

of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 

human brain due to its non-invasiveness, easy setup and 
acquisition procedure, high temporal resolution, portability, 
and cost-effectiveness [7]. Despite its advantages, an 
unpreventable challenge with EEG is that it contains a mixture 
of signals (brain and non-brain activities) from multiple 
sources, thereby resulting into signal misinterpretation [8]. For 
this reason, EEG preprocessing pipeline has become essential 
in achieving quality brain signals. A blind source separation 
technique based on Independent Component Analysis (ICA), 
has been notably applied to separate independent sources from 
linearly mixed EEG signals obtained via multiple channels. 
Specifically, ICA reconstructs the sources into new mixtures 
such that the actual brain source will be enhanced in some 
components and the artifacts in others [9]. The application of 
ICA in EEG preprocessing has been beneficial; however, 
manual inspection is conventionally utilized in recognizing 
and rejecting independent components (ICs) after 
decomposition. For accurate and proper ICs analysis,   
adequate time and practice are required to study their 
properties, since ICs have no specific order or clearly defined 
interpretations [10-11].  

The emergence of data- driven approaches and machine 
learning models have led to the development of automated ICs 
recognition and elimination methods, including MARA, 
ADJUST, FASTER, SASICA, IC_MARC, and ICLabel for  
ICA decomposition optimization [10-11]. ICLabel, a deep 
learning-based model, has demonstrated superiority in terms 
of improved accuracy and faster computational time compared 
to other approaches [11]. ICLabel, developed by Luca Pion-
Tonachini et al., is an EEG-based IC classifier trained on an 
extensive database of expert labeling of ICs, classifying the 
ICs into seven classes consisting of the brain, muscle, eye, 
heart, line noise, channel noise, and others (unclear sources), 
thus allowing the removal of artifactual components in a 
consistent manner[11]. In recent time, many studies have 
employed ICA to separate neural sources from artifactual 
sources, and ICLabel for ICs identification and rejection. For 
instance, RELAX (Reduction of Electroencephalographic 
Artifacts), a recently developed automated EEG artifact 
removal implemented in EEGLAB utilized ICLabel for 
artifact components detection [12]. A study conducted by [13] 
investigated the efficacy of an EEG-based brain-computer 
interface virtual reality system for post-stroke upper limb 
rehabilitation. In their signal preprocessing, the combination 
of manual inspection and ICLabel were used for ICs labeling 
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and rejection. While these studies and many more have used 
ICLabel either for only ICs detection/ detection and rejection, 
minimal or no information has been provided on the ICLabel 
artifactual components rejection threshold (TH) utilized in 
their studies. The components rejection TH is one of the 
crucial steps in the ICLabel pipeline that determines the 
number of ICs to be eliminated. It is presumed that a high TH 
value will cause large ICs to be rejected, possibly leading to 
signal over-cleaning (loss of brain signal), and choosing low 
TH value may result to under-cleaning of the signal (retaining 
more artifacts). For this reason, some researchers tend to reject 
only a few components mostly related to eye and muscle 
artifacts. Besides, total separation of the brain signal from 
artifacts is challenging, thus selecting appropriate TH value for 
the ICs classes is highly essential in other to obtain clean 
signals that reflect requisite neural activity and is 
almost/nearly free of artifacts. In this regard, this study 
systematically investigated the effect of varied ICLabel based 
artifactual component rejection employing different TH values 
on EEG signal recorded from post-stroke patients who 
performed four distinct MI tasks including wrist and grasping 
movements. The performance evaluation of each TH group 
was compared with data without component rejection (NO-
TH) using three standard EEG quantifiers, including brain 
topographical map that employs z-scored power, Pearson 
correlation coefficient, and classification accuracy. 

II. METHODS 

A. Participants information 

A total of six ischemic stroke patients with no other 
neurological or psychiatric disease were recruited to 
participate in the MI tasks experiment designed for the study. 
Two out of the patient have an intracranial skull. The 
demographic information of the patients is presented in the 
table below (Table 1). The participants agreed to the objective 
of the study and gave written informed consent and permission 
for the publication of their data to improve scientific 
knowledge. The experimental protocol was approved by the 
Institutional Review Board of Shenzhen Institutes of 
Advanced Technology, Chinese Academy of Sciences, and 
Shenzhen Longhua District Central Hospital (NO. SIAT-IRB-
220715-H0601). 

 Table 1: The participant’s demographic information 

 

B.  Data Acquisition and Preprocessing Pipeline 

The study experiment was conducted at the Department of 

Rehabilitation Medicine, Shenzhen Longhua District Central 

Hospital. A 64-channel EEG recording system (EasyCap 

Brain Products GmbH, Germany) was utilized to record the 

signal from the participants. The EEG electrode channels 

were distributed over the scalp of each patient based on the 

international 10–20 electrode placement configuration, as 

shown in Fig. 1A. The impedance was kept below 5 kΩ and 

8kΩ depending on the patient tolerance level. The MI-EEG 

signals were recorded at a sampling rate of 1000 Hz and 

referenced to CPz during recording. Before the 

commencement of the experiment, the patients were briefed 

and trained to get them accustomed to the experimental 

procedure.  As presented in Fig.1B and 1C, five out of the six 

participant’s elicited four MI tasks consisting of key grip 

(KG), power grip (PG), wrist extension (WE), and wrist 

flexion (WF) during the experimental session. Participant 1 

(P1) was able to perform only three tasks (PG, WE and WF). 

During the experiment, a computer screen was placed in front 

of the participants to play a video of each MI task. The video 

contained 10 images of active (say, key grip) and 10 images 

of non-active (rest) tasks making 20 total tasks per video. The 

participants were instructed to imagine eliciting the 

corresponding MI task displayed on the screen when the video 

is been played. Each active task in the video is displayed for 

5s, followed by a 5s rest period to avoid mental fatigue. All 

participants did two experimental sessions for each MI task. 

It is worth noting that the EEG acquisition system was 

integrated with TTL parallel synchronization box via a 

custom-built MATLAB script to automatically create a 

marker on the EEG recordings at the onset points of each 

specified MI task, triggered when a corresponding motor task 

appears/disappears on/from the computer screen.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 
 

 

 

 

 

Fig. 1 (A) The 10-20 international EEG electrode configuration [14] (B) A 
representative patient during one of the experimental sessions (C) Pictorial 
representation of the motor imagery tasks including wrist and grasping 
movements 
 

The preprocessing and analysis of the recorded MI-EEG 
data were performed using EEGLAB (version 2022.0) and 
MATLAB (version R2018b) toolboxes. Meanwhile, studies 
[4, 15] have reported beta oscillations as a potential biomarker 
in stroke recovery since they are involved in cortical 
disinhibition and associated with sensorimotor processing. 
Therefore, the beta frequency band in the range of 16-26Hz 
was extracted from the recorded signal using a spectrogram-

Patient 
Number 

Age 
(Years) 

Sex 
Paretic 
Limb 

Level of 
Impairment 

Time of 
Stroke 

(months) 

P1 76 F Left 2 36 

P2 37 M Left 2 3 

P3 41 M Left 1 2 

P4 60 M Left 0 2 

P5 56 M Left 0 2 

P6 52 M Right 0 2 

(A) 

(B) 

(C) 

KG PG WE WF 

Right Left 

Top of head Left side of head 



  

based short-time Fourier transform and eighteen channels 
located (including FC1, FC2, FC3, FC4, FC5, FC6, C1, C2, 
C3, C4, C5, C6, CP1, CP2, CP3, CP4, CP5, and CP6) at the 
sensorimotor cortex region (ROI) of the brain was used for the 
investigation in this study.  

C. ICLABEL Artifact Rejection Threshold parameter 

In this study the default version of ICLabel that uses IC 

spectrum, topography, and autocorrelation activities as 

features for classification was utilized due to its better 

estimation of brain ICs. The ICA decomposition technique 

was applied to the filtered signal using INFOMAX and 

ICLabel was employed to classify/label the ICs. 

Subsequently, a threshold value with minimum and maximum 

limits is selected to flag the components for rejection. Since 

one of the primary determinants of the preprocessed signal 

outcome is the artifact rejection TH value applied to the 

classified ICs, this study investigates six different TH groups 

(Table 2) on MI-EEG signal recorded from stroke patients.   

The performance of the TH groups was compared with EEG 

signal recorded without applying ICLabel and is denoted as 

NO-TH. Afterward, the active segment of each TH group data 

was epoched from -1 to 5 and save for subsequent analysis. 
 

Table 2: Probability range (Min-Max) to flag components for rejection 

Artifacts/

Noise 

Threshold Confidence   level (Min - Max) 
40% 

(TH-1) 

50% 

(TH-2) 

60% 

(TH-3) 

70% 

(TH-4) 

80% 

(TH-5) 

90% 

(TH-6) 

Eye 0.4 - 1 0.5 - 1 0.6 - 1 0.7 - 1 0.8 - 1 0.9 - 1 

Muscle 0.4 - 1 0.5 - 1 0.6 - 1 0.7 - 1 0.8 - 1 0.9 - 1 

Heart 0.4 - 1 0.5 - 1 0.6 - 1 0.7 - 1 0.8 - 1 0.9 - 1 

Line  0.4 - 1 0.5 - 1 0.6 - 1 0.7 - 1 0.8 - 1 0.9 - 1 

Channel 0.4 - 1 0.5 - 1 0.6 - 1 0.7 - 1 0.8 - 1 0.9 - 1 

Other 0.4 - 1 0.5 - 1 0.6 - 1 0.7 - 1 0.8 - 1 0.9 - 1 
 

D. Feature extraction and MI tasks decoding 

For adequate decoding of the MI tasks, the preprocessed 

signal was portioned into different analysis windows using an 

overlapping technique of 1s window length with an increment 

of 100ms. Following this, wavelet transform, a time and 

frequency domain feature often used in the space of EEG 

signal characterization [16], was extracted and used to 

construct a machine learning model based on linear 

discriminant analysis (LDA), to decode the four MI tasks. The 

LDA classifier was trained and tested using a 5-fold cross-

validation scheme to circumvent model biasedness.  
 

E. EEG evaluation quantifiers and statistical analysis 

Three quantifiers namely z-score based topographical map 

(TM), correlation coefficient (CC) given in Eq. 1 and average 

classification accuracy (ACA) shown in Eq. 2 were utilized to 

analyze performance between the NO-TH and TH groups. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎𝑣𝑒 =
∑ (

𝑇𝑃𝑖+𝑇𝑁𝑖

𝑇𝑃𝑖+ 𝐹𝑁𝑖+𝐹𝑃𝑖+𝑇𝑁𝑖
)𝑁

𝑖=1

𝑁
 

  (1) 

 

where N is the number of MI classes,  𝑇𝑃𝑖: true positive,  𝐹𝑃𝑖: 

false positive, 𝐹𝑁𝑖: false positive, and  𝑇𝑁𝑖: true negative. 

The CC between two random variables X and Y with 

nonzero variation is: 

𝜌(𝑋, 𝑌) =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌

   (2) 

where 𝑐𝑜𝑣  is the covariance, and  𝜎𝑋𝜎𝑌  is the standard 

deviation of  𝑋 𝑎𝑛𝑑 𝑌. 
 

Furthermore, Friedman and multiple comparison tests with 

a confidence level of p<0.05 was used for the statistical 

significance check.  

III. RESULTS AND DISCUSION 

A. Brain Topographical map 
 

The brain topographical map was generated by computing 

each participant's z-score power across all channels. Fig. 2 

presents a representative topographical map of P2. From Fig. 

2, strong desynchronization is noticeable for wrist motion 

tasks (WEMI and WFMI) compared to grasping motion tasks 

(KGMI and PGMI) for all the TH groups. One possible reason 

for this could be that grasp tasks involve hand and wrist 

muscle strength coordination which requires different 

combinations of movements of the fingers and wrist. In this 

regard, grasping tasks could be more complex to imagine than 

wrist movement tasks. PGMI shows the weakest response for 

all TH groups. Also, lateralization could be seen for all the 

tasks except for some TH groups in PGMI though with 

varying response strength. Comparing the response for each 

task in NO-TH with data preprocessed with different 

artifactual component rejection TH values, a significant 

difference in signal desynchronization could be seen for all 

the TH groups.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Again, examining the performance of the TH groups task-

wise, TH-2, TH-3, and TH-6 maps show better responses 

(especially at the ROI) and more appropriate rejection of 

artifactual ICs. A reduction in brain response is seeable in 

NO-TH 

 

TH-1 

TH-2 

TH-3 

TH-4 

TH-5 

TH-6 

PGMI WEMI WFMI KGMI 

Fig. 2 A representative brain topographical map of patient 2 for all the MI tasks 



  

PGMI and WEMI tasks for TH-4 and TH-5. Less 

lateralization in the sensorimotor cortices are found in WEMI 

and WFMI for TH-1. Based on these results from P2 and other 

participants (not reported due to pages limitation), it may be 

concluded that applying TH value with high confidence for 

ICs rejection in ICLabel classifier may lead to loss of more 

brain signals, thus affecting the brain signal final pattern. 

Similarly, utilizing low TH value would allow more artifacts 

to be retain in the signal. 
 

B. Correlation coefficient  analysis 

Through a custom-built script in MATLAB, 153 electrode 

pairs were formed using the eighteen channels at the ROI. 

After that, the CC (eq. 2) was estimated for each pair of 

electrodes for all the participants. The Friedman test with p-

value < 0.05 was used to evaluate the statistical significance 

between the TH groups. A multiple comparison test was 

further use to carry out a pairwise comparison between the 

groups. The results for each MI task are presented in Fig. 3A-

D. The Figure compares the mean of NO-TH (highlighted in 

blue) and other TH groups. A symbol with a line extending 

out of it represents each group's mean interval. Two group 

means are significantly different if their intervals are disjoint 

and not significant if their intervals overlap. Each plot in Fig. 

3A-D shows the result for KGMI, PGMI, WEMI, and WFMI 

tasks with statistical significance (p<0.001) between NO-TH 

and other TH groups. The TH-3 group shows high and 

consistent significance for all the tasks except KGMI, where 

TH-4 is more significant. Based on TH-3 performance, it will 

be utilized for subsequent result analysis.  

 All the electrode pair with their respective correlation values 

could not be reported due to pages limitation, therefore top 

ten electrode pairs with the highest correlation values for all 

the tasks in the TH-3 group is presented in Table 3. A high 

correlation value between the signals from different channel 

pairs indicates similar brain activity for the specific MI tasks, 

and a low correlation means the brain signal is relatively 

independent. Through careful observation, it could be seen 

that the same electrode pair (C1-CP3) obtained the highest 

correlation values for KGMI (0.9905), WEMI (0.965), and 

WFMI (0.9710) tasks, while for PGMI, CP2-CP4 electrode 

pair has the best correlation values. Overall, more electrode 

pairs are replicable across the MI tasks. Although P2 has left-

hand impairment, electrode pairs’ in the bilateral region of the 

brain show high correlations for the four MI tasks, and 

ipsilateral regions incline to have more electrode pairs’ 

correlations for KGMI, WEMI, and WEMI probably due to 

brain reorganization during the recovery.   

 

 

In addition, all the electrode pairs with high correlation locate  

closely in the same cortices and few electrode pairs between 

hemispheres show high correlations. These results reveal that 

brain activity correlates linearly with distance, and a strong 

correlation between electrode pairs is independent of the 

different brain cortices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

C. Evaluation of MI tasks Decoding Performance 

The bar plot in Fig. 4A depicts the mean decoding 

performance across tasks for NO-TH and TH-3 groups. The 

result present in this Fig. revealed the effect of artifacts 

contamination in EEG signal on MI tasks classification 

accuracy.  For all the participants, the signal preprocessed 

with TH-3 performed better than data without ICs artifact 

rejection TH (Friedman test, p = 0.01). Generally, P2 

achieved the highest decoding accuracy of 99.39%±  0.52 

followed by P1 (97.15% ±2.97). The least performance was 

obtained by P3 (69.67% ± 9.02). Specifically TH-3 recorded 

an increment of 47.19%, 46.66%, 16.79%, 5.02%, 23.02% 

and 32.16% for P1, P2, P3, P4, P5 and P6 against NO-TH 

group.  The confusion matrix shown in Fig. 4B and 4C 

represents individual task classification performance across 

all the participants. Fig. 4B present the result for NO-TH data 

while 4C for TH-3 result. Inspecting both confusion matrixes, 

the TH-3 obtained better accuracies for all the tasks with a 

statistical significance of p=0.04. For both groups, the KGMI 

task has the highest performance.  

 

S/N 
CHAN. 

PAIRS 
KGMI 

CHAN. 

PAIRS 
PGMI 

CHAN. 

PAIRS 
WEMI 

CHAN. 

PAIRS 
WFMI 

1 C1-CP3 0.9905 CP2-CP4 0.9216 C1-CP3 0.965 C1-CP3 0.9710 

2 C1-CP1 0.9788 FC4-C2 0.8580 CP4-CP6 0.9319 C1-CP1 0.9689 

3 CP1-CP3 0.9701 C3-C5 0.8107 FC5-C5 0.9160 CP1-CP3 0.9488 

4 CP4-CP6 0.9016 FC5-C3 0.8005 CP1-CP3 0.8929 FC4-FC6 0.9448 

5 FC2-C2 0.8490 FC4-FC6 0.7948 FC4-FC6 0.8916 FC3-FC5 0.9379 

6 CP2-CP4 0.7505 C1-CP3 0.7868 C1-CP1 0.8884 C3-C5 0.9233 

7 FC4-FC6 0.7496 FC2-C2 0.7803 FC2-C2 0.8611 FC2-FC4 0.9227 

8 C4-CP2 0.7435 FC6-C6 0.7795 C3-C5 0.8286 FC5-C5 0.9183 

9 C4-CP4 0.7298 FC5-C5 0.7733 FC2-FC4 0.8193 FC2-C2 0.9120 

10 CP2-CP6 0.7122 FC2-FC4 0.7612 FC3-C3 0.8077 FC5-C3 0.9025 

Table 3: Top ten electrode pair correlation values ranked using correlation coefficient quantifier 

 

Fig. 3 A multiple comparison plot between the considered TH groups correlation  

values for (A) KGMI (B) PGMI (C) WEMI and (D) WFMI 



  

The WEMI task recorded the least accuracy for NO-TH while 

WFMI for TH-3. It is worth stating that the KGMI results 

presented in this study were computed using data from 5 

participants because P1 couldn’t imagine the key grip task 

during the experiment sessions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. CONCLUSION 

This study investigated the impact of varying ICLABEL-

based artifact rejection THs on motor cortex beta oscillatory 

activity from MI-EEG signal recordings in post-stroke 

survivors. The effects were quantified using three EEG-based 

metrics and finding from the experimental results revealed 

that the artifact rejection TH will definitely altered the brain 

oscillatory pattern. Specifically, some TH values result in 

increased brain response while some decrease the brain 

activation response. In the correlation analysis, TH-3 

demonstrates consistent and high statistical significance (with 

NO-TH) for all the tasks compared to others. The result shows 

that brain activity correlates linearly with distance, and a high 

correlation value is unrelated or unassociated with the region 

of the brain. Besides, a high correlation value implies a 

stronger functional connectivity between different areas of the 

brain and vice-versa. Therefore, correlation analysis can be 

used to study the functional connectivity patterns of the brain. 

The TH-3 data achieved high decoding accuracy subject-wise 

and in the individual MI decoding. Based on the findings from 

this work, utilizing TH with a high confidence level may lead 

to significant loss of brain signal, and a low confidence level 

can result in less removal of artifacts; therefore, this study will 

suggest a TH-values between confidence level among the 

range of 50% - 70%. Notably, the ICLABEL-TH should be 

selected with caution and according to the study objective(s) 

to prevent signal misinterpretation. It is worth stating that this 

is a preliminary finding and is limited in data sample size, 

EEG frequency band, and rigorous analyses. Extensive 

research is ongoing to further validate our findings. 
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Fig. 4 (A) Subject-wise average classification accuracy across all tasks. Average 

decoding performance across participants for individual MI tasks for (B) NO-TH 

group and (C) TH-3 group. 


