468 research outputs found

    Fermi surface of the filled-skutterudite superconductor LaRu4P12: A clue to the origin of the metal-insulator transition in PrRu4P12

    Full text link
    We report the de Haas-van Alphen (dHvA) effect and magnetoresistance in the filled-skutterudite superconductor LaRu4P12, which is a reference material of PrRu4P12 that exhibits a metal-insulator (M-I) transition at T_MI~60 K. The observed dHvA branches for the main Fermi surface (FS) are well explained by the band-structure calculation, using the full potential linearized augmented-plane-wave method with the local-density approximation, suggesting a nesting instability with q =(1,0,0) in the main multiply connected FS as expected also in PrRu4P12. Observed cyclotron effective masses of (2.6-11.8)m_0, which are roughly twice the calculated masses, indicate the large mass enhancement even in the La-skutterudites. Comparing the FS between LaRu4P12 and PrRu4P12, an essential role of c-f hybridization cooperating with the FS nesting in driving the the M-I transition in PrRu4P12 has been clarified.Comment: Appeared in Physical Review

    Specific heat evidence for two-gap superconductivity in ternary-iron silicide Lu2_{2}Fe3_{3}Si5_{5}

    Full text link
    We report low-temperature specific heat studies on single-crystalline ternary-iron silicide superconductor Lu2_{2}Fe3_{3}Si5_{5} withTcT_c = 6.1 K down to ∼Tc/20\sim T_c/20. We confirm a reduced normalized jump in specific heat at TcT_c, and find that the specific heat divided by temperature C/TC/T shows sudden drop at ∼Tc/5\sim T_c/5 and goes to zero with further decreasing temperature. These results indicate the presence of two distinct superconducting gaps in Lu2_{2}Fe3_{3}Si5_{5}, similar to a typical two-gap superconductor MgB2_{2}. We also report Hall coefficients, band structure calculation, and the anisotropy of upper critical fields for Lu2_{2}Fe3_{3}Si5_{5}, which support the anisotropic multiband nature and reinforce the existence of two superconducting gaps in Lu2_{2}Fe3_{3}Si5_{5}.Comment: 5 pages, 5 figure

    Role of p-f Hybridization in the Metal-Non-Metal Transition of PrRu4P12

    Full text link
    Electronic state evolution in the metal-non-metal transition of PrRu4P12 has been studied by X-ray and polarized neutron diffraction experiments. It has been revealed that, in the low-temperature non-metallic phase, two inequivalent crystal-field (CF) schemes of Pr3+ 4f^2 electrons with Gamma_1 and Gamma_4^(2) ground states are located at Pr1 and Pr2 sites forming the bcc unit cell surrounded by the smaller and larger cubic Ru-ion sublattices, respectively. This modulated electronic state can be explained by the p-f hybridization mechanism taking two intermediate states of 4f^1 and 4f^3. The p-f hybridization effect plays an important role for the electronic energy gain in the metal-non-metal transition originated from the Fermi surface nesting.Comment: 5 pages, 5 figures. Accepted by J. Phys. Soc. Jp

    Drastic change in transport of entropy with quadrupolar ordering in PrFe4_{4}P12_{12}

    Full text link
    The antiferroquadrupolar ordering of PrFe4_{4}P12_{12} is explored by probing thermal and thermoelectric transport. The lattice thermal conductivity drastically increases with the ordering, as a consequence of a large drop in carrier concentration and a strong electron-phonon coupling. The low level of carrier density in the ordered state is confirmed by the anomalously large values of the Seebeck and Nernst coefficients. The results are reminiscent of URu2_{2}Si2_{2} and suggest that both belong to the same class of aborted metal-insulator transitions. The magnitude of the Nernst coefficient, larger than in any other metal, indicates a new route for Ettingshaussen cooling at Kelvin temperatures.Comment: final published versio

    Evidence for ferromagnetic spin-pairing superconductivity in UGe2_2: A 73^{73}Ge-NQR study under pressure

    Full text link
    We report that a novel type of superconducting order parameter has been realized in the ferromagnetic states in UGe2_2 via 73^{73}Ge nuclear-quadrupole-resonance (NQR) experiments performed under pressure (PP). Measurements of the nuclear spin-lattice relaxation rate (1/T1)(1/T_1) have revealed an unconventional nature of superconductivity such that the up-spin band is gapped with line nodes, but the down-spin band remains gapless at the Fermi level. This result is consistent with that of a ferromagnetic spin-pairing model in which Cooper pairs are formed among ferromagnetically polarized electrons. The present experiment has shed new light on a possible origin of ferromagnetic superconductivity, which is mediated by ferromagnetic spin-density fluctuations relevant to the first-order transition inside the ferromagnetic states.Comment: 5 pages, 5 figure

    Competition between unconventional superconductivity and incommensurate antiferromagnetic order in CeRh1-xCoxIn5

    Full text link
    Elastic neutron diffraction measurements were performed on the quasi-two dimensional heavy fermion system CeRh1-xCoxIn5, ranging from an incommensurate antiferromagnet for low x to an unconventional superconductor on the Co-rich end of the phase diagram. We found that the superconductivity competes with the incommensurate antiferromagnetic (AFM) order characterized by qI=(1/2, 1/2, delta) with delta=0.298, while it coexists with the commensurate AFM order with qc=(1/2, 1/2, 1/2). This is in sharp contrast to the CeRh1-xIrxIn5 system, where both the commensurate and incommensurate magnetic orders coexist with the superconductivity. These results reveal that particular areas on the Fermi surface nested by qI play an active role in forming the superconducting state in CeCoIn5.Comment: RevTeX4, 4 pages, 4 eps figures; corrected a typo and a referenc

    Definitive experimental evidence for two-band superconductivity in MgB2

    Full text link
    The superconducting gap of MgB2 has been studied by high-resolution angle-resolved photoemission spectroscopy (ARPES). The momentum(k)-resolving capability of ARPES enables us to identify the s- and p-orbital derived bands predicted from band structure calculations and to successfully measure the superconducting gap on each band. The results show that superconducting gaps with values of 5.5 meV and 2.2 meV open on the s-band and the p-band, respectively, but both the gaps close at the bulk transition temperature, providing a definitive experimental evidence for the two-band superconductivity in MgB2. The experiments validate the role of k-dependent electron-phonon coupling as the origin of multiple-gap superconductivity in MgB2.Comment: PDF file onl

    Anomalous Anisotropic Magnetoresistance in Heavy-Fermion PrFe4P12

    Full text link
    We have investigated the anisotropy of the magnetoresistance in the Pr-based HF compound PrFe4P12. The large anisotropy of effective mass and its strong field dependence have been confirmed by resistivity measurements. Particularly for H||[111], where the effective mass is most strongly enhanced, the non-Fermi liquid behavior has been observed. Also, we have found the angular dependence of the magnetoresistance sharply enhanced at H||[111], which is evidently correlated with both the non-Fermi liquid behavior and the high-field ordered state (B-phase).Comment: 3 pages, 3 figures. J. Phys. Soc. Jpn. Vol.77, No.8, in pres

    Elastic properties of the Non-Fermi liquid metal CeRu4Sb12Ce Ru_4 Sb_{12} and the Dense Kondo semiconductor CeOs4Sb12Ce Os_4 Sb_{12}

    Get PDF
    We have investigated the elastic properties of the Ce-based filled skutterudite antimonides CeRu4_{4}Sb12_{12} and CeOs4_{4}Sb12_{12} by means of ultrasonic measurements. CeRu4_{4}Sb12_{12} shows a slight increase around 130 K in the temperature dependence of the elastic constants CC11_{11}, (CC11_{11}-CC12_{12})/2 and CC44_{44}. No apparent softening toward low temperature due to a quadrupolar response of the 4ff-electronic ground state of the Ce ion was observed at low temperatures. In contrast CeOs4_{4}Sb12_{12} shows a pronounced elastic softening toward low temperature in the longitudinal CC11_{11} as a function of temperature (TT) below about 15 K, while a slight elastic softening was observed in the transverse CC44_{44} below about 1.5 K. Furthermore, CeOs4_{4}Sb12_{12} shows a steep decrease around a phase transition temperature of 0.9 K in both CC11_{11} andC C44_{44}. The elastic softening observed in CC11_{11} below about 15 K cannot be explained reasonably only by the crystalline electric field effect. It is most likely to be responsible for the coupling between the elastic strain and the quasiparticle band with a small energy gap in the vicinity of Fermi level. The elastic properties and the 4ff ground state of Ce ions in CeRu4_{4}Sb12_{12} and CeOs4_{4}Sb12_{12} are discussed from the viewpoint of the crystalline electric field effect and the band structure in the vicinity of Fermi level.Comment: 9 pages, 11 figures, regular pape

    Metallic mean-field stripes, incommensurability and chemical potential in cuprates

    Full text link
    We perform a systematic slave-boson mean-field analysis of the three-band model for cuprates with first-principle parameters. Contrary to widespread believe based on earlier mean-field computations low doping stripes have a linear density close to 1/2 added hole per lattice constant. We find a dimensional crossover from 1D to 2D at doping ∼0.1\sim 0.1 followed by a breaking of particle-hole symmetry around doping 1/8 as doping increases. Our results explain in a simple way the behavior of the chemical potential, the magnetic incommensurability, and transport experiments as a function of doping. Bond centered and site-centered stripes become degenerate for small overdoping.Comment: submitted to PR
    • …
    corecore