27 research outputs found

    Assessment of Water Pollution in Tipparthy Revenue Sub-Division, Nalgonda (District), Andhra Pradesh, India

    No full text
    A systematic study has been carried out to explore the physicochemical characteristics of drinking water sources of Tipparthy revenue sub-division, Nalgonda (District), Andhra Pradesh, India. Totally 49 water samples were collected from the different locations (22 villages) of the study area including bore well, open well and hand pump water and analyzed for pH, EC, TDS, turbidity, total hardness, fluoride, chloride, nitrate, nitrite, sulphate, phosphates, calcium, magnesium, sodium, potassium, Iron and dissolved oxygen. On an average, in almost all the samples, one or the other chemical constituent was beyond the permissible limits it was also concluded that water sources in the study area not fit for potability. Sodium absorption ratio (SAR) and water quality (WQI) studies indicate water available from all sources not fit for irrigation also. The study indicates the need for periodic monitoring of ground water in the study area

    Comparison of Protein Acetyltransferase Action of CRTAase with the Prototypes of HAT

    No full text
    Our laboratory is credited for the discovery of enzymatic acetylation of protein, a phenomenon unknown till we identified an enzyme termed acetoxy drug: protein transacetylase (TAase), catalyzing the transfer of acetyl group from polyphenolic acetates to receptor proteins (RP). Later, TAase was identified as calreticulin (CR), an endoplasmic reticulum luminal protein. CR was termed calreticulin transacetylase (CRTAase). Our persistent study revealed that CR like other families of histone acetyltransferases (HATs) such as p300, Rtt109, PCAF, and ESA1, undergoes autoacetylation. The autoacetylated CR was characterized as a stable intermediate in CRTAase catalyzed protein acetylation, and similar was the case with ESA1. The autoacetylation of CR like that of HATs was found to enhance protein-protein interaction. CR like HAT-1, CBP, and p300 mediated the acylation of RP utilizing acetyl CoA and propionyl CoA as the substrates. The similarities between CRTAase and HATs in mediating protein acylation are highlighted in this review

    Incorporation of Human-Platelet-Derived Growth Factor-BB Encapsulated Poly(lactic-co-glycolic acid) Microspheres into 3D CORAGRAF Enhances Osteogenic Differentiation of Mesenchymal Stromal Cells

    Get PDF
    Tissue engineering aims to generate or facilitate regrowth or healing of damaged tissues by applying a combination of biomaterials, cells, and bioactive signaling molecules. In this regard, growth factors clearly play important roles in regulating cellular fate. However, uncontrolled release of growth factors has been demonstrated to produce severe side effects on the surrounding tissues. In this study, poly(lactic-co-glycolic acid) (PLGA) microspheres (MS) incorporated three-dimensional (3D) CORAGRAF scaffolds were engineered to achieve controlled release of platelet-derived growth factor-BB (PDGF-BB) for the differentiation of stem cells within the 3D polymer network. Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and microtomography were applied to characterize the fabricated scaffolds. In vitro study revealed that the CORAGRAF-PLGA-PDGF-BB scaffold system enhanced the release of PDGF-BB for the regulation of cell behavior. Stromal cell attachment, viability, release of osteogenic differentiation markers such as osteocalcin, and upregulation of osteogenic gene expression exhibited positive response. Overall, the developed scaffold system was noted to support rapid cell expansion and differentiation of stromal cells into osteogenic cells in vitro for bone tissue engineering applications
    corecore