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Abstract  

Tissue engineering aims to generate or facilitate regrowth or healing of damaged tissues by 

applying a combination of biomaterials, cells, and bioactive signaling molecules. In this regard, 

growth factors clearly play important roles in regulating cellular fate. However, uncontrolled 

release of growth factors has been demonstrated to produce severe side effects on the 

surrounding tissues. In this study, poly (lactic-co-glycolic acid) (PLGA) microspheres (MS) 

incorporated three-dimensional (3D) CORAGRAF scaffolds were engineered to achieve 

controlled release of platelet-derived growth factor-BB (PDGF-BB) for the differentiation of 

stem cells within the 3D polymer network. Fourier transform infrared spectroscopy, energy-

dispersive X-ray spectroscopy, scanning electron microscopy, and microtomography were 

applied to characterize the fabricated scaffolds. In vitro study revealed that the CORAGRAF–

PLGA–PDGF-BB scaffold system enhanced the release of PDGF-BB for the regulation of cell 

behavior. Stromal cell attachment, viability, release of osteogenic differentiation markers such 

as osteocalcin, and upregulation of osteogenic gene expression exhibited positive response. 

Overall, the developed scaffold system was noted to support rapid cell expansion and 

differentiation of stromal cells into osteogenic cells in vitro for bone tissue engineering 

applications.  

 

Keywords:  CORAGRAF; PLGA; Microsphere; Stromal cell; Platelet-derived growth factor; 

Osteogenic 

 

 

 

 

 



 

 

3 

 

Introduction  

Calcium phosphate (CaP) scaffolds composed of beta-tricalcium phosphate,1 

hydroxyapatite, chitosan,2 and their composites3 are ideal for bone repair owing to their 

biocompatibility, adjustable degradation rates, and excellent bioactivity.4-6 However, they are 

not osteoinductive in nature, and materials such as chitosan are brittle and exhibit poor cell 

attachment. 7-9 Although scaffolding materials are critical for tissue regeneration, researchers 

have found that growth factor stimulation, both in vitro and in vivo, is also vital. Reports have 

shown that the overall functional bioactivity of scaffolds, including bone or cartilage healing, 

improved following incorporation of growth factors, such as transforming growth factor-beta 

(TGF-b), vascular endothelial growth factor (VEGF), and bone morphogenetic proteins 

(BMPs), into the biomaterial scaffolds.10 Among the various well-known growth factors, 

platelet-derived growth factor-BB (PDGF-BB) is a potent mitogen that can induce 

angiogenesis and direct cell migration, and is involved in vessel maturation and stabilization.11 

In recent times, although increasing numbers of drug-loaded scaffolds have been designed 

using different structures and materials, the undesirable drug burst release phenomenon 

associated with rapid drug diffusion from these scaffolds has reduced the effectiveness of the 

drugs, thus constraining the application of these biocomposites.12-13 Nevertheless, studies have 

shown that incorporation of drug-loaded microspheres (MS) into composite scaffolds with 

gradient structure could effectively solve the problem of drug burst release phenomenon.14-16 

It has been reported that, in addition to scaffolds and growth factors, human primary cells (e.g. 

mesenchymal stem cells (MSC), osteocytes, and endothelial cells) supplemented with growth 

factors or cytokines can also be used to repair bone tissues.17 Growth factors such as BMP2, 

TGF-b, and Wnt ligands affect cellular migration and proliferation as well as osteogenic 

differentiation of MSC during bone repair.18-19 In addition, they can regulate the expression of 

Runt-related transcription factor 2 (Runx2) and osterix (Osx) through intracellular proteins or 
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transcription factors, including b-catenin, Smad1/5, and Smad2/3.20 Ideally, the key growth 

factors can be programmatically encapsulated and embedded into CaP scaffolds, and then 

released into the microenvironment of the bone graft after being implanted. These growth 

factors can subsequently stimulate the expression of genes responsible for osteoblastic 

differentiation from MSC to pre-osteoblasts and active osteoblasts21 through a variety of 

signaling pathways.22  

Coral has been used as a bone substitute for more than a decade. This material makes a 

good choice for fabricating scaffolds because it can be easily molded into any desired shape 

and size.23 Earlier reports have shown that coral-based biomaterials are biocompatible and 

osteoconductive.24-25 Besides, coral can be used as a delivery system for the bone growth 

factors owing to its adhesive property.26 The coral graft has interconnected porous structures 

that offer a large surface area for cell attachment. In addition, it also provides a suitable 

environment for nutrient transfer and physiological support. Coral-based biomaterials, such as 

Biocoral and Algipore®, have been widely used in the augmentation of periodontal defects and 

nonunion in pre-clinical and clinical models.27-28 Poly(lactic-co-glycolic acid) (PLGA) has 

been extensively employed in the form of microspheres or nanospheres for the controlled 

delivery of peptides or proteins owing to its excellent biological properties, including 

biodegradability, biocompatibility, nontoxicity, bacteriostaticity, and strong adhesion.29 

During such encapsulation process the biological activity of the growth factors were much 

retained as the unwanted degradation of growth factors was prevented. Although, adsorption 

of growth factors onto the surface of natural of synthetic polymer matrices will allow the local 

delivery of growth factors this process will lead in compromising the release kinetics.30-31 For 

a successful tissue engineering application it’s advantageous to develop a construct that 

contains a carrier for successful delivery of growth factors and a 3D scaffold of cell attachment 

and differentiation. 
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 Although previous studies have reported on the incorporation of MS into 

nanofibrous scaffold for the controlled release of growth factors such as PDGF-BB,32-33 these 

scaffolds have limited hard-tissue engineering applications owing to their biomechanical 

properties. Consequently, in the present study, for the first time, we attempted to develop an 

ideal hard scaffold system based on the hypothesis that culturing of bone marrow stromal cells 

in coral graft with controlled release of PLGA–PDGF-BB could induce differentiation of bone 

marrow stromal cells to bone-like cells. Such simple yet effective approach could pave the way 

for further developments in the field of implantable scaffolds for bone tissue engineering.  

 

Materials and Methods  

Materials 

PLGA (glycolic acid:lactic acid at a ratio of 50:50, Mw=64 kDa) was purchased from 

DURECT Corporation (Pelham, AL, USA). Recombinant PDGF-BB was obtained from Life 

Technologies (Invitrogen, USA). Dichloromethane, tetrahydrofuran, hexane, and polyvinyl 

acid (PVA) were purchased from Sigma Aldrich (USA). All the other chemicals used were of 

analytical grade. 

 

Preparation of Coragraft scaffold 

Coral from the Porites species was processed using lab standardized protocol. Debris was 

washed out of the coral using distilled water. Coral was cut and processed into blocks of 5.0 

mm X 5.0 mm according to the requirements of the study. These cubical were treated 

chemically followed by freeze drying. Samples were then radiosterilized at Malaysian Nuclear 

Agency using gamma irradiation. 

Preparation of PDGF-loaded MS by double emulsion method 
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The MS were prepared by using the double emulsion method.34 The PVA solution was prepared 

by adding 5 g of PVA to 100 ml of distilled water, and the mixture was heated and mixed using 

a thermal magnetic stirrer until all the PVA dissolved. Subsequently, the PLGA emulsion was 

dropped into the PVA solution using a syringe, and the solution was sonicated for 20 s. Then, 

the solution was left on a magnetic stirrer for 4 h. The MS were collected by centrifugation in 

a 50-ml centrifuge tube. The collected solid MS were washed with distilled water at least thrice, 

freeze-dried, and stored at −80°C. 

The main water-in-oil (abbreviated as w/o) emulsion was prepared by emulsifying PDGF-BB 

(PDGF- BB 25 µg/ml in a buffer of sodium acetate at pH=6.3, specific volume (1 ml) of 10% 

PLGA (in dichloromethane solution via exploiting a sonicator at 15W (Dakshin, India) for 20s 

over an ice bath. The prepared w/o emulsion was subsequently mixed with 2 ml of PVA 

solution (1% in water) by agitation to establish a secondary water-in-oil-in-water (abbreviated 

as w/o/w) emulsion. Subsequently, the solution was stirred in a magnetic stirrer for 3h at room 

temperature to evaporate dichloromethane and the resulting solution was centrifuged (2500g, 

5 minutes) to yield microspheres. The yielded microspheres carefully rinsed with deionized 

water multiple times, lyophilized and subsequently stored in vacuumed cabinet.  

 

Incorporation of PLGA MS into three-dimensional CORAGRAF  

The PLGA MS with FITC-BSA were incorporated into three-dimensional (3D) CORAGRAF 

scaffolds , The PLGA MS with FITC-BSA were prepared by using the double emulsion method 

where 1g of PLGA was dissolved in 10 ml of dichloromethane and emulsified with 100μl of 

FITC-BSA solution employing a sonicator at 200 V for 20 s, microspheres were then collected 

through freeze-dry method. Briefly, 5 mg of dry PLGA MS were suspended in 500 μl of 

hexane. Subsequently, 80 µl of the suspension was cultured into the block scaffold, and the 

scaffold was forsaken in room atmosphere for half an hour to allow the evaporation of the 
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solvent. Then, another 80 μl of the suspension were seeded on the opposite side of the coragraf 

scaffold. The entire step has been repeated frequently for two times, leading to the 

incorporation of approximately 5 mg of MS onto the scaffold. After that, the scaffold was 

treated with a mixed solvent comprising hexane/THF (90/10 v/v) to anchor the MS on the 

scaffold and lyophilized to get rid of the solvent. As a control, scaffolds with PLGA MS 

deprived of growth factors were employed. The concentration of the MS precursor and seeding 

times were adjusted accordingly to control the accumulated amount of MS on the scaffold. 

 

Physicochemical characterization of the biocomposite scaffolds 

The surface morphologies of 3D CORAGRAF with and without PLGA MS were studied under 

a scanning electron microscope (SEM; Model JEOL JSM-6360, Japan), and the elemental 

composition of the scaffolds was semi-quantitatively investigated using SEM-energy 

dispersive X-ray spectroscopy (SEM-EDX) (INCA Energy 200, Oxford Inst). To determine 

the average size of the fabricated MS, the samples were run through Malvern Mastersizer 2000 

particle size analyzer (Malvern Instruments Ltd., England). Furthermore, microtomography 

(micro-CT) system (Scanco Medical XtremeCT HRpQCT) was used to quantify the 3D 

microstructural properties of the scaffolds, and the Brunauer–Emmett–Teller (BET-Autosorb-

iQ2) specific surface area of the biocomposites was measured from the nitrogen adsorption–

desorption isotherms. To identify the functional groups of the scaffolds, Fourier-transform 

infrared spectroscopy (FTIR; Bruker, tensor 27; Germany) analysis was performed in a 

frequency range of 4000–400 cm−1. The X-ray diffraction (XRD) patterns of the composites 

were obtained using PANanalytical Empyrean XRD (USA) with monochromatic CuKa 

radiation (λ = 1.54056 A), operated at 45 kV, 40 mA, step size of 0.026°, and a scanning rate 

of 0.1 s−1 over a 2θ range from 20° to 80°. The glass transition temperature of the PLGA MS 

was determined using differential scanning calorimeter (DSC, METTLER TOLEDO 820C-

http://www.malvern.com/en/support/product-support/mastersizer-range/mastersizer-2000/
http://www.malvern.com/en/support/product-support/mastersizer-range/mastersizer-2000/
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Error ±0.25−1°C) at a heating rate of 4°C/min. The weight loss and thermal stability of the 

scaffolds were ascertained by thermogravimetric analysis (TGA, Mettler Toledo-SDTA851) at 

a heating rate of 5○C/min and temperature of 30°C–800○C.  

 

Cell morphology 

After incubation for a few days, the samples were removed from the culture plates, washed 

thrice with PBS, and fixed with 3% glutaraldehyde in PBS for 24 h at 4°C. Subsequently, the 

samples were thoroughly washed with PBS and sequentially dehydrated twice in 30%, 50%, 

70%, 80%, 90%, 95%, and 100% ethanol for 15 min each. The fixed samples were freeze-

dried, sputter-coated with gold, and examined under SEM. 

 

Isolation of MSC 

Human bone marrow aspiration from the femoral medullary canal was performed 

concomitantly during knee arthroplasty at the University Malaya Medical Center (UMMC), 

Malaysia, with the patient under general anesthesia. The procedure was performed under 

aseptic conditions by an experienced surgeon. Prior to knee arthroplasty, informed written 

consent was obtained from each bone marrow donor. During knee arthroplasty, approximately 

2 ml of bone marrow sample were aspirated from the patient’s femoral medullary canal using 

a needle and syringe, transferred into a BD vacutainer, and transported to the cell culture lab. 

The bone marrow samples were collected from the operating room only after completion of the 

bone marrow aspiration procedure by the surgeon. The bone marrow collection procedure for 

the present study was approved by the medical ethics committee (Approval ID No. 

MECID.NO: 201412-859, UMMC). The cell isolation procedure was performed in accordance 

with the approved guidelines of UMMC.  
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 Subsequently human bone marrow stromal cells were harvested and cultured as 

previously described.35  

 

 

Cell seeding and culture 

The MSC suspension at a density of 3.0 × 104 cells/mL was seeded onto the PLGA MS 

incorporated CORAGRAF. Subsequently, the MSC-seeded scaffolds were left for 28 days in 

DMEM to induce osteogenic differentiation, and the medium was changed every 4 days. 

 

 

In vitro release of PDGF-BB 

In a 6-well plate, 10 µg of the dispersed PLGA MS were incubated in 1 ml of DMEM, and the 

medium was collected at certain time points. The procedure was simultaneously repeated with 

PLGA MS embedded onto the CORAGRAF. The media collected were assessed using the 

PDGF-BB ELISA kit (eBioscience, USA) according to manufacturer’s instructions. 

 

Confocal microscopy 

Confocal microscopy was performed to determine the cell density on the surface of the 

scaffolds and infiltration of the cells into the pores of the scaffolds. The MSC-seeded scaffolds 

were stained with Hoechst 33342 cell-permanent nuclear stain (Life Technologies, Invitrogen, 

USA). The molecular probes got bound to the A-T regions of the DNA and emitted a blue 

fluorescence at 460 nm. The morphology and distribution of the MS in the scaffold were 

examined using SEM and laser scanning confocal microscopy (Leica TCS-SP5 II; Leica 

Microsystem, Mannheim, Germany). The scaffolds with human bone marrow stromal stem 
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cells were stained according to the manufacturer’s protocol and analyzed using confocal 

microscopy (Leica TCS-SP5 II; Leica Microsystem, Mannheim, Germany). 

 

Alamar Blue assay 

The nontoxic Alamar Blue assay (Invitrogen) was performed to measure the cell proliferation 

in PLGA MS loaded CORAGRAF on days 0, 3, and 7 post-seeding. In a 96-well plate, 1/10th 

volume of the AlamarBlue® reagent was added to the cells in the culture medium (cell density 

= 1.0 × 104 cells/mL), and the mixture was incubated in 5% CO2 at 37C for 4 h. Subsequently, 

a 100-µl aliquot was placed in a microtiter plate reader (Biotek, Epoch USA) and the 

absorbance measurements were determined at 570 and 600 nm.  

 

Osteocalcin ELISA 

Osteocalcin activity on the scaffolds was determined on days 0, 3, and 7 using the osteocalcin 

ELISA assay kit (eBioscience). First, the cell culture sample was incubated at room 

temperature (18 to 25°C) for 2 h, and then, following a few wash procedures according to the 

manufacturer’s protocol, 100μl substrate solution was added and incubated for 10 minutes. 

Subsequently, the absorbance measurements were determined at 450 nm using a 

spectrophotometer (Biotek, Epoch USA). 

 

Alizarin red staining 

Alizarin red staining was performed to identify the calcium deposits on the scaffolds. A total 

of 500 µl of Alizarin red were added to the cell culture plate and incubated for 20 min. 

Subsequently, the plate was continuously washed with PBS to remove any additional stain. 

The culture plate images were captured using (Nikon, Japan) T3 microscope. 
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Gene expression  

To examine the level of osteogenic differentiation, gene xpression was employed according to 

a previously established method.36  

 

Results  

Morphological analysis of the scaffolds 

SEM analysis was performed to assess the patterns of pore diameter and surface of the scaffolds 

(Fig. 1a–c). While the pure CORAGRAF had a pore diameter of 107–315-µm, the pores of 

PLGA MS loaded CORAGRAF were partially infiltrated with MS and a few pores remained 

open. Analysis of the PLGA MS using Mastersizer (Fig. 1d) indicated that the average particle 

size to volume % was around 137 µm. Furthermore, confocal images confirmed (Fig. 2a–c) 

that the PDGF-BB-loaded PLGA MS infiltrated up to 599-µm thickness of the 3D scaffold 

material. The PLGA MS loaded with FITC-BSA are shown in Fig. 2c. The 3D image obtained 

by incorporating multiple series of images collected by confocal laser microscopy further aided 

the investigation of PLGA infiltration.  

 

Porosity analysis 

The 3D CORAGRAF scaffolds with and without PLGA MS were subjected to micro-CT 

examination (Fig. 3a, b). The total volume of the 3D CORAGRAF without PLGA MS was 

432.81 mm3. The material volume of the CORAGRAF without PLGA MS was 169.22 mm3, 

while that of the CORAGRAF with the PLGA MS was 288.58 mm3. The ratio of the total 

volume and material volume for the CORAGRAF without and with PLGA MS was about 0.39 

and 0.66, respectively. These results clearly indicated that almost 50% of the CORAGRAF was 

infiltrated with PDGF-BB-loaded PLGA MS. The porosity of the CORAGRAF without the 

PLGA MS was about 60%; however, after PLGA MS incorporation, the porosity decreased to 
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about 33%. Furthermore, micro-CT was also employed to measure the material surface area of 

the CORAGRAF without and with MS, which was 2031.12 and 2199.01mm2, respectively.  

 Comparative BET analysis (Fig. 4a, b) of the scaffold materials revealed that both the 

scaffolds possessed a typical type IV isotherm with a well-defined presence of mesopores. 

However, the pore-size distribution calculated by Barret–Joyner–Halenda (BJH) method 

revealed that the total pore volume of the mesopores was considerably lower in CORAGRAF 

with PLGA MS, when compared with that in CORAGRAF without PLGA MS, which could 

be owing to the high total volume of the macropores assigned to the PLGA MS. In addition, 

CORAGRAF without PLGA MS showed a significantly higher specific surface area (32.67 

m2/g) and specific pore volume (0.019 cm3/g), when compared with CORAGRAF with PLGA 

MS (2.36 m2/g and 0.0063 cm3/g, respectively), which might be owing to the space occupied 

by the PLGA MS. 

Characterization of the scaffolds 

FTIR spectroscopy was employed to study the functional groups of the scaffolds, and the 

results are shown in Fig. 5a. Both the CORAGRAF scaffolds with and without PLGA MS 

showed the characteristic peaks of carbonate, including the absorption bands of 706, 853, 1081, 

and 1447 cm-1 corresponding to in-plane bending, out-of-plane bending, symmetric stretching, 

and asymmetric stretching vibrations of the carbonate ions, respectively.37-40 However, 

CORAGRAF with PLGA MS revealed four new absorption peaks (which were not observed 

in CORAGRAF without PLGA MS) at 1176, 1265, 1753, and 2921 cm-1 corresponding to C-

O stretching, CH2 and CH3 asymmetric angular deformation, C=O stretching, and C-H 

stretching vibrations, respectively,41-46 which proved the presence of PLGA in this 

biocomposite.  

 The polymorphism of the scaffolds was examined by XRD, and the XRD patterns of 

both the scaffolds are shown in Fig. 5b. The XRD spectra of the two scaffolds revealed sharp 
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peaks (indicated by * in Fig. 5b) corresponding to the crystalline planes of aragonite (JCPDS 

card No. 41-1475). However, no peak of vaterite or calcite was noted, indicating that the 

CORAGRAF was nearly pure aragonite.47 It should be noted that the encapsulated PLGA MS 

did not show any peak in the XRD spectrum, suggesting that the addition of MS did not change 

the CORAGRAF polymorphism and that the PLGA particles were amorphous in nature.48-49 

Furthermore, to confirm the types of elements present in the CORAGRAF, EDS was employed, 

and the results revealed the presence of moderate carbon levels and high carbon and calcium 

levels (Fig. 5c). Moreover, the levels of these elements were not significantly altered after the 

incorporation of PLGA MS.  

 

DSC and TGA analyses 

DSC and TGA analyses were conducted to further investigate the existence of PLGA MS in 

the CORAGRAF, and the results are illustrated in Fig. 6a and 6b, respectively. While the DSC 

thermogram of the CORAGRAF without PLGA MS did not show any peak in the designated 

temperature range, that of the CORAGRAF with PLGA MS presented an endothermic peak at 

51°C, corresponding to glass transition temperature (Tg) of PLGA.50 As indicated by the TGA 

curve of pure CORAGRAF (Fig. 6b), the CaCO3 crystals revealed two main steps of weight 

loss. The first step of weight loss was observed at around 300○C, exhibiting about 1% decrease 

in weight, which can be attributed to evolution of CO2 from CaCO3.
51 The second step of 

weight loss was noted with a higher slope at 575°C–780°C, with a weight loss of about ~42%, 

which indicated decomposition of CaCO3 to CaO.52-53 However, with the addition of PLGA 

MS, the weight-loss pattern exhibited significant difference at 100°C–600°C, with a 

considerably large amount (6%) of mass loss in CORAGRAF with PLGA MS, when compared 

with that in pure CORAGRAF. In particular, the weight loss at 100°C–240°C can be attributed 

to evaporation of the solvent, while that at 240°C–600°C can be related to decomposition of 
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PLGA, with major decomposition corresponding to combustion of organic compound 

occurring at 300°C (which overlapped with conversion of CaCO3 to CO2). Thus, it can be 

concluded that the loading capacity of PLGA MS on the CORAGRAF was about 6%. 

 

Cell viability and bone markers expression 

Alamar Blue assay was performed to confirm cell viability throughout the experimental period 

(Fig. 7b). The cell viability gradually increased, which was indicated by gradual dye reduction. 

When compared with early time points (days 0 and 3), the latter time points presented 

significant increase in cell viability (p <0.05). Moreover, confocal microscopy results 

confirmed the DNA staining of the cells inside the coral graft (Fig. 7a).  

 As shown in Fig. 8a, considerably intense alizarin staining was evident in the bone 

marrow stromal cell cultures treated with PLGA MS containing PDGF-BB, whereas no 

positive staining was observed in the untreated cultures. Moreover, addition of PDGF-BB alone 

to the cultures also showed positive alizarin staining, although the intensity of staining (red 

dye) was less. These results suggested that the controlled release of PDGF-BB from the PLGA 

MS incorporated onto the CORAGRAF scaffold may be beneficial for rapid cell expansion and 

differentiation of stromal cells in 3D environment.   

 The controlled release of PDGF-BB was monitored using two different groups at 

variable time points (Fig. 8b). Incubation of PLGA MS encapsulated with PDGF-BB in the 

medium showed an initial burst and relatively high PDGF-BB release on days 0 and 3, and a 

subsequent reduction in the release of the growth factor on day 7. In contrast, the PDGF-BB-

encapsulated PLGA MS incorporated onto the 3D CORAGRAF presented a relatively low 

release of approximately 200 pg/ml PDGF-BB on days 0, 3, and 7, and the quantity was almost 

the same at all the three time points. These results indicated that the release of PDGF-BB from 

the PLGA MS incorporated 3D scaffold was well controlled. Furthermore, the cells treated 
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with PLGA MS containing PDGF-BB showed a twofold increase in the release of osteocalcin 

on day 7 (Fig. 8c), when compared with that on day 0. In contrast, the cells treated with PDGF-

BB did not show any increase in osteocalcin release. Moreover, monitoring of the release of 

osteocalcin from the PDGF-BB–PLGA MS–CORAGRAF scaffold at various time points 

clearly indicated that the release of osteocalcin gradually increased, and was significant on day 

21, when compared with that on earlier time points (Fig. 8d).  

 Subsequently, we examined the expression of an array of genes related to 

osteogenesis, including Runx2, osteopontin (OPN) (Fig. 9a, b), collagen1, BMP2 (Fig. 10a, 

b), bone gamma-carboxyglutamate (Gla) protein (BGALP), and osteonectin (ON) (Fig. 11a, 

b) at different time points (days 0, 7, 14, and 21). On day 14, the expression of Runx2 and 

OPN was significantly high, exhibiting approximately three- and twofold increase, 

respectively, in the PDGF-BB-loaded PLGA MS–CORAGRAF scaffold, when compared 

with that in the CORAGRAF scaffolds without PLGA MS and PDGF-BB. In addition, the 

expressions of collagen1 and BMP2 were significantly increased (p < 0.05) in the PDGF-

BB-loaded PLGA MS–CORAGRAF scaffold, when compared with those in the 

CORAGRAF scaffolds without PLGA MS and PDGF-BB; however, a decline in the 

expressions of these genes was noted on day 21. Similarly, the levels of BGALP and ON 

were also significantly higher (p<0.05) on day 14 in the PDGF-BB-loaded PLGA MS–

CORAGRAF scaffold, when compared with those in the CORAGRAF scaffolds without 

PLGA MS and PDGF-BB.  
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Discussion  

The use of CORAGRAF in tissue engineering has gained potential interest owing to its 

osteoconductive property and compatibility with the in vivo models.54 In the present study, to 

improve its osteogenic differentiation property, we incorporated PLGA MS containing PDGF-

BB into the CORAGRAF scaffold for the controlled release of PDGF-BB. The SEM and 

Mastersizer data indicated that the scaffold environment could support the growth and 

differentiation of stromal cells. PLGA microspheres can be prepared using polymers of 

different molecular weight that can influence the release profiles of target proteins. Herein, we 

were capable of attaining the sustained release of PDGF-BB from PLGA50 microspheres 

implanted in the scaffolds. Microsphere encapsulation of growth factors protects them from 

degradation and deactivation when compared to direct supplementation of growth factors. 

According to our in vitro bioactivity assay PDGF-BB has retained its bioactivity during loading 

into PLGA microspheres. Loading of growth factors into the microspheres and subsequent 

incorporation of such cargo into 3D scaffolds serves as a golden gate toward yielding a 

controlled release profile for growth factors as well as sustaining their bioactivity for a longer 

duration of time. Of note, the mechanism behind such findings is yet to be discovered. 55  In 

clinical applications for the treatment of various bone ailments, the general biology of the bone 

marrow stromal cells is the focus of interest.56 In the present study, although only a few pores 

of the CORAGRAF were found to be infiltrated by PLGA MS, the CORAGRAF provided a 

conducive environment for cell attachment on its surface. The cells attached onto the 

CORAGRAF scaffold were randomly distributed within the pores and on the MS with an 

average size of approximately 137 µm. Furthermore, the attached cells showed roughened 

blebs and protrusions on the scaffold surface as well as a fibroblast-like appearance in some 

regions. It has been previously reported that for achieving osteoblast-like behavior of the cells, 

factors such as cell attachment efficiency and dissemination rely on the surface chemistry of 
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the material,57 which was found to be positive in the present study. Furthermore, cell infiltration 

into the PLGA MS incorporated CORAGRAF was random.  

 Previous studies have shown that coral is an excellent material for bone repair. Coral 

grafting of osteochondral defects has been reported to produce new bone with characteristics 

similar to those of normal subchondral bone in rabbits. Some pre-clinical reports and clinical 

trials have confirmed that coral has good biocompatibility properties, and there have been no 

reports on any rejection or collateral effects of coral. Moreover, it has been demonstrated that 

coral can be used as an osteoconductor.58 However, some recent studies have proved that 

stromal cell proliferation without growth factors in 3D scaffolds presents important limitations. 

Consequently, many studies have used expensive commercial osteogenic media for cell 

differentiation protocols.  

 In the present study, to achieve a cell confluence in a few days, similar to that obtained 

in conventional culture plates, we employed the controlled growth factor release strategy for 

releasing PDGF-BB from PLGA MS incorporated CORAGRAF scaffolds. PDGF-BB 

stimulates the proliferation and recruitment of both periodontal ligament and bone cells in vitro. 

Some in vivo studies have demonstrated that this growth factor enhances periodontal 

regeneration in beagle dogs and non-human primates, heals bone defects in humans, and 

enhances tissue regeneration, wound healing, and food ulcers.59 However, despite these 

advantages, to maintain adequate therapeutic effect, PDGF-BB needs to be injected in high 

dose or injected repeatedly.60 This is not practically applicable in most cases because of the 

high costs and multiple administrations, which may necessitate additional surgical procedures 

in vivo. Based on previous studies, we presumed that a slower release of PDGF-BB would keep 

the growth factor intact and functionally active when released into the culture. In this regard, 

we examined different strategies in vitro. It must be noted that alizarin staining of PDGF-BB-

encapsulated PLGA MS–CORAGRAF was too intense because of the presence of CaCO3 in 
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CORAGRAF. Hence, the difference in staining between the 3D CORAGRAF with and without 

PDGF-BB-encapsulated PLGA MS could not be assessed at the early stage of differentiation.  

 To the best of our knowledge, the present study is the first to report on rapid cell 

expansion and osteogenic differentiation using CORAGRAF with PDGF-BB-encapsulated 

PLGA MS. The morphological changes that occurred in the developed biocomposite provided 

a suitable environment for the cells to get attached onto the surface. Although some decline in 

the porosity was observed, these changes were inevitable owing to MS incorporation, which 

favored greater surface area without affecting cell viability. Besides, scaffolds provide a 

conducive environment for the growth of multipotent bone marrow derived stromal cells and 

stimulate their osteoconductive and osteoinductive properties that contribute to bone repair. 

Previous studies have shown that bone marrow stromal cells isolated from the marrow of mice, 

rats, rabbits, dogs, and humans can be expanded in vitro. These cells can be differentiated into 

osteoblast-like cells under certain conditions using commercial osteogenic media and multiple 

growth factor supplements such as BMP.61  

 While PDGF-BB can induce proliferation of stromal cells and osteogenesis,62 there are 

conflicting reports on the ability of PDGF-BB to inhibit osteogenic differentiation of osteoclast 

cell lines in conventional culture flasks.63 It has been reported that markers of mature 

osteoblasts such as alkaline phosphatase (ALP), osteocalcin, and type I collagen were inhibited 

in the pre-osteocytic cell lines.64 However, some studies have demonstrated that PDGF-BB 

does not alter the marker activity and mineralization in human stromal cells. It has been 

indicated that imatinib-induced blockade of PDGFR-β produced opposing effects on the 

differentiation of bone marrow stromal cells.65 Another study revealed that PDGF-BB with 

peptides could improve the proliferation, differentiation, and early calcification of osteoblast 

cells.66 Among the many major growth factors, PDGF-BB is the only growth factor currently 

approved by the US-FDA for periodontal regeneration as a part of dental bone filling device. 
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Furthermore, PDGF-BB has been incorporated into the MS in nanofibrous materials for 

osteogenic response by slow delivery of the growth factor. Our previous studies have 

demonstrated that some nanofibrous material and fucoidan-based scaffolds promoted 

differentiation of bone marrow stromal cells with PDGF-BB supplementation.67-68 In the 

present study, the release of the osteogenic differentiation marker, osteocalcin, confirmed that 

the controlled release of PDGF-BB from the 3D scaffold is beneficial for osteogenic 

differentiation. Despite the proven efficacy of PDGF-BB, its biomedical application is 

complicated by its short biological half-life, systemic side effects, rapid clearance, and lack of 

biomechanical property of the fibrous materials. Therefore, delivery systems that maximize the 

therapeutic abilities of PDGF-BB are desirable, not only for enhancing bone formation, but 

also for limiting undesirable biological reactions. In previous studies, to retain PDGF-BB at 

the desired site for a prolonged time period, delivery via PLGA MS has been employed.36  

Intramembranous ossification has been known as the usual mechanism deployed by the 

biomaterials to induce bone formation; yet, endowing growth factors induces bone formation 

via endochondral ossification. In spite of the fact that growth factors showed efficacy in 

inducing osteogenesis, materials with osteoconductive traits are preferred for preclinical 

studies. Nonetheless so far no studies have been devoted to comparing the performance of 

biomimetic composites against growth factor supplementation in inducing osteogenesis. This 

could be due to variety of the approaches employed for the purpose of fabricating a biomimetic 

composite scaffold (either in nanoscale or microscale) and the choice of cell line, i.e. primary 

or immortal cells. In fact some of the most crucial phenomenon involved in cell development 

cascade such as ell contraction, ligation, and intracellular signaling are entitled to improvement 

as a consequence of enhanced cell attachment.  Overall, in comparison to two-dimensional 

surface, 3D surface offers extra dimension which subsequently enhances the interactions 
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between cell and the matrix as well as communications among cells, that were known vital to 

the physiology of the cells.69  

 In the present study, the considerable increase (p < 0.05) in the expression of Runx2, 

the central control gene within the osteoblast phenotype, on day 14 indicated the ability of the 

developed scaffold system to support osteogenic differentiation. A previous work had 

demonstrated that recombinant PDGF-BB can increase the activity of Runx2 as well as regulate 

the downstream genes that maintain osteoblastic phenotype such as ALP. Moreover, while the 

gene expression in human MSC seeded onto collagen nanofibers has been reported to mitigate 

after passing of 3 weeks 70, in this study, the decline was yielded after day 14 in the developed 

3D scaffold. These findings showed the short window between start and ending of the 

differentiation phenomenon of human MSC grown on CORAGRAF with PDGF-BB-

encapsulated PLGA MS. Collagen is among crucial proteins expressed all through bone 

differentiation. Herein, collagen gene expression was apparent in the early time point, 

underscoring the primary cellular response to osteoinductive factors. Furthermore, in 

accordance with previous reports, collagen was considerably expressed after day 7, and was 

extracellularly produced leading to formation of an well integrated matrix within the scaffold 

structure. This is a crucial step due to imperative role of collagen in stimulates pre-osteoblast 

cell surface integrin that leads to activation of other core binding factors, which is known as an 

essential part of osteogenesis.70 The expression of OPN (as a function of time) during the 

differentiation phase (in presence or absent of extracellular molecules) followed the same 

pattern as ON expression. Previous reports have demonstrated that the level of OPN is high 

during the differentiation period.71 In addition, a previous study revealed that the OPN 

expression escalated at the inauguration of osteodifferentiation and subsequently reduced 

during 21 days of differentiation. In the same manner, another study reported a decline in OPN 

expression in human MSC after 1 week of differentiation. 
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 The increase in BMP2 noted on day 14 in the present study primarily showed that the 

developed scaffold could initiate particular differentiation of stem cells or progenitors to form 

osteoblast-like cells. PDGF-BB-induced nodule formation was increased in the presence of 

BMP2, indicating the strong probability of signaling between PDGF-BB and BMP2 pathways. 

Moreover, PDGF-BB requires the presence of BMPs for the induction of bone formation, 

suggesting that BMP signaling could be involved in PDGF-BB-based stem cell gene therapy. 

In addition, this may also explain the ability of PDGF-BB to enhance bone formation in bone 

but not in other tissues. It has been reported that the increased expression of some osteogenic 

markers such as OPN and osteocalcin (BGALP) (p<0.05) indicates early osteogenic 

differentiation phase was perfectly funded by 3D environment.72-73 Osteocalcin is 

predominantly expressed by the osteoblastic phenotype, and is a reliable marker in osteogenic 

differentiation and subsequent mineralization.74 In connection with the BGALP quantification 

data, the post-proliferative osteoblast maker, osteocalcin, was also used in the present study to 

assess the differentiation of human MSC on CORAGRAF with PDGF-BB-encapsulated PLGA 

MS. The osteocalcin gene expression was observed at an early time point, which could be a 

consequence of the partial differentiation of human MSC on the scaffold. This finding was 

corresponding to the alizarin red staining results, which revealed that the staining was 

inhomogeneous throughout the sample.  

 In conclusion, the developed PDGF-BB-encapsulated PLGA MS–CORAGRAF 

scaffold system was capable of releasing PDGF-BB in a controlled manner for a prolonged 

duration with significant reduction in burst effect. The stromal cell attachment, viability, 

release of osteogenic differentiation markers such as osteocalcin, and upregulation of 

osteogenic gene expression were considerably positive. The findings of this study could aid in 

the development of a strategy to construct a powerful delivery vehicle to overcome a well-

described challenge in tissue engineering. 



 

 

22 

 

 

Acknowledgments 

SM was supported by the University of Malaya (Grant: RG 366-15AFR). The authors are 

thankful for the major grant support provided by the University of Malaya (Reference No.: 

UM.C/625/1/HIR/MOHE/CHAN/03; Account No.: A000003-50001).  

 

 

Conflict of interests  

The author(s) declare no competing financial interests. 

 

 

References  

 

 

1. Kim, C.-S.; Kim, J.-I.; Kim, J.; Choi, S.-H.; Chai, J.-K.; Kim, C.-K.; Cho, K.-S., Ectopic 

bone formation associated with recombinant human bone morphogenetic proteins-2 using 

absorbable collagen sponge and beta tricalcium phosphate as carriers. Biomaterials 2005, 26 

(15), 2501-2507. 

2. Oh, S.-H.; Finones, R. R.; Daraio, C.; Chen, L.-H.; Jin, S., Growth of nano-scale 

hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials 2005, 26 (24), 

4938-4943. 

3. Alam, M. I.; Asahina, I.; Ohmamiuda, K.; Takahashi, K.; Yokota, S.; Enomoto, S., 

Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as 

carriers for rhBMP-2. Biomaterials 2001, 22 (12), 1643-1651. 

4. Yang, Y.; Kim, K.-H.; Ong, J. L., A review on calcium phosphate coatings produced 

using a sputtering process—an alternative to plasma spraying. Biomaterials 2005, 26 (3), 327-

337. 

5. El-Ghannam, A., Bone reconstruction: from bioceramics to tissue engineering. Expert 

review of medical devices 2005, 2 (1), 87-101. 

6. Mehrali, M.; Thakur, A.; Pennisi, C. P.; Talebian, S.; Arpanaei, A.; Nikkhah, M.; 

Dolatshahi‐Pirouz, A., Nanoreinforced Hydrogels for Tissue Engineering: Biomaterials that 

are Compatible with Load‐Bearing and Electroactive Tissues. Advanced Materials 2016. 

7. López-Pérez, P. M.; da Silva, R. M.; Serra, C.; Pashkuleva, I.; Reis, R. L., Surface 

phosphorylation of chitosan significantly improves osteoblast cell viability, attachment and 

proliferation. Journal of Materials Chemistry 2010, 20 (3), 483-491. 

8. Li, J.; Yun, H.; Gong, Y.; Zhao, N.; Zhang, X., Investigation of MC3T3-E1 cell 

behavior on the surface of GRGDS-coupled chitosan. Biomacromolecules 2006, 7 (4), 1112-

1123. 



 

 

23 

 

9. Silva, S. S.; Luna, S. M.; Gomes, M. E.; Benesch, J.; Pashkuleva, I.; Mano, J. F.; Reis, 

R. L., Plasma surface modification of chitosan membranes: characterization and preliminary 

cell response studies. Macromolecular bioscience 2008, 8 (6), 568-576. 

10. Madl, C. M.; Mehta, M.; Duda, G. N.; Heilshorn, S. C.; Mooney, D. J., Presentation of 

BMP-2 mimicking peptides in 3D hydrogels directs cell fate commitment in osteoblasts and 

mesenchymal stem cells. Biomacromolecules 2014, 15 (2), 445-455. 

11. Santo, V. E.; Gomes, M. E.; Mano, J. F.; Reis, R. L., Controlled release strategies for 

bone, cartilage, and osteochondral engineering—part I: recapitulation of native tissue healing 

and variables for the design of delivery systems. Tissue Engineering Part B: Reviews 2013, 19 

(4), 308-326. 

12. Ucuzian, A. A.; Gassman, A. A.; East, A. T.; Greisler, H. P., Molecular mediators of 

angiogenesis. Journal of burn care & research: official publication of the American Burn 

Association 2010, 31 (1), 158. 

13. Hu, J.; Prabhakaran, M. P.; Tian, L.; Ding, X.; Ramakrishna, S., Drug-loaded emulsion 

electrospun nanofibers: characterization, drug release and in vitro biocompatibility. RSC 

Advances 2015, 5 (121), 100256-100267. 

14. Teng, S. H.; Lee, E. J.; Wang, P.; Jun, S. H.; Han, C. M.; Kim, H. E., Functionally 

gradient chitosan/hydroxyapatite composite scaffolds for controlled drug release. Journal of 

Biomedical Materials Research Part B: Applied Biomaterials 2009, 90 (1), 275-282. 

15. Lam, J.; Lu, S.; Kasper, F. K.; Mikos, A. G., Strategies for controlled delivery of 

biologics for cartilage repair. Advanced drug delivery reviews 2015, 84, 123-134. 

16. Vo, T. N.; Kasper, F. K.; Mikos, A. G., Strategies for controlled delivery of growth 

factors and cells for bone regeneration. Advanced drug delivery reviews 2012, 64 (12), 1292-

1309. 

17. Holland, T. A.; Mikos, A. G., Review: Biodegradable polymeric scaffolds. 

Improvements in bone tissue engineering through controlled drug delivery. In Tissue 

Engineering I, Springer: 2005; pp 161-185. 

18. Evans, N. D.; Gentleman, E.; Polak, J. M., Scaffolds for stem cells. Materials Today 

2006, 9 (12), 26-33. 

19. Tabata, Y., Tissue regeneration based on growth factor release. Tissue Engineering 

2003, 9 (4, Supplement 1), 5-15. 

20. Chen, G.; Deng, C.; Li, Y.-P., TGF-beta and BMP signaling in osteoblast differentiation 

and bone formation. Int J Biol Sci 2012, 8 (2), 272-288. 

21. Sun, X.; Su, J.; Bao, J.; Peng, T.; Zhang, L.; Zhang, Y.; Yang, Y.; Zhou, X., Cytokine 

combination therapy prediction for bone remodeling in tissue engineering based on the 

intracellular signaling pathway. Biomaterials 2012, 33 (33), 8265-8276. 

22. Wei, L.; Cai, C.; Lin, J.; Chen, T., Dual-drug delivery system based on hydrogel/micelle 

composites. Biomaterials 2009, 30 (13), 2606-2613. 

23. Afzal, F.; Pratap, J.; Ito, K.; Ito, Y.; Stein, J. L.; Van Wijnen, A. J.; Stein, G. S.; Lian, 

J. B.; Javed, A., Smad function and intranuclear targeting share a Runx2 motif required for 

osteogenic lineage induction and BMP2 responsive transcription. Journal of cellular 

physiology 2005, 204 (1), 63-72. 

24. Shahgaldi, B., Coral graft restoration of osteochondral defects. Biomaterials 1998, 19 

(1), 205-213. 

25. Begley, C. T.; Doherty, M. J.; Mollan, R.; Wilson, D. J., Comparative study of the 

osteoinductive properties of bioceramic, coral and processed bone graft substitutes. 

Biomaterials 1995, 16 (15), 1181-1185. 

26. Doherty, M. J.; Schlag, G.; Schwarz, N.; Mollan, R.; Nolan, P.; Wilson, D., 

Biocompatibility of xenogeneic bone, commercially available coral, a bioceramic and tissue 

sealant for human osteoblasts. Biomaterials 1994, 15 (8), 601-608. 



 

 

24 

 

27. Kim, C.-K.; Choi, E.-J.; Cho, K.-S.; Chai, J.-K.; Wikesjö, U. M., Periodontal repair in 

intrabony defects treated with a calcium carbonate implant and guided tissue regeneration. 

Journal of periodontology 1996, 67 (12), 1301-1306. 

28. Tuominen, T.; Jämsä, T.; Tuukkanen, J.; Nieminen, P.; Lindholm, T.; Lindholm, T.; 

Jalovaara, P., Native bovine bone morphogenetic protein improves the potential of biocoral to 

heal segmental canine ulnar defects. International orthopaedics 2000, 24 (5), 289-294. 

29. Christian, S.; Doris, M.; Alexis, S.; Georgios, L.; Else, S.; Franz, K.; Karl, D.; Rolf, E., 

The fluorohydroxyapatite (FHA) FRIOS® Algipore® is a suitable biomaterial for the 

reconstruction of severely atrophic human maxillae. Clinical oral implants research 2003, 14 

(6), 743-749. 

30. Wang, S.; Castro, R.; An, X.; Song, C.; Luo, Y.; Shen, M.; Tomás, H.; Zhu, M.; Shi, 

X., Electrospun laponite-doped poly (lactic-co-glycolic acid) nanofibers for osteogenic 

differentiation of human mesenchymal stem cells. Journal of Materials Chemistry 2012, 22 

(44), 23357-23367. 

31. Wang, Z.; Zhao, Y.; Luo, Y.; Wang, S.; Shen, M.; Tomás, H.; Zhu, M.; Shi, X., 

Attapulgite-doped electrospun poly (lactic-co-glycolic acid) nanofibers enable enhanced 

osteogenic differentiation of human mesenchymal stem cells. RSC Advances 2015, 5 (4), 2383-

2391. 

32. Makadia, H. K.; Siegel, S. J., Poly lactic-co-glycolic acid (PLGA) as biodegradable 

controlled drug delivery carrier. Polymers 2011, 3 (3), 1377-1397. 

33. Tian, H.; Bharadwaj, S.; Liu, Y.; Ma, H.; Ma, P. X.; Atala, A.; Zhang, Y., Myogenic 

differentiation of human bone marrow mesenchymal stem cells on a 3D nano fibrous scaffold 

for bladder tissue engineering. Biomaterials 2010, 31 (5), 870-877. 

34. McCall, R. L.; Sirianni, R. W., PLGA nanoparticles formed by single-or double-

emulsion with vitamin E-TPGS. JoVE (Journal of Visualized Experiments) 2013,  (82), 

e51015-e51015. 

35. Tan, S.-L.; Ahmad, R. E.; Ahmad, T. S.; Merican, A. M.; Abbas, A. A.; Ng, W. M.; 

Kamarul, T., Effect of growth differentiation factor 5 on the proliferation and tenogenic 

differentiation potential of human mesenchymal stem cells in vitro. Cells Tissues Organs 2012, 

196 (4), 325-338. 

36. Puvaneswary, S.; Raghavendran, H. B.; Talebian, S.; Murali, M. R.; Mahmod, S. A.; 

Singh, S.; Kamarul, T., Incorporation of Fucoidan in β-Tricalcium phosphate-Chitosan scaffold 

prompts the differentiation of human bone marrow stromal cells into osteogenic lineage. 

Scientific reports 2016, 6. 

37. Wang, W.; Wang, G.; Liu, Y.; Zheng, C.; Zhan, Y., Synthesis and characterization of 

aragonite whiskers by a novel and simple route. Journal of Materials Chemistry 2001, 11 (6), 

1752-1754. 

38. Su, J.; Zhu, F.; Zhang, G.; Wang, H.; Xie, L.; Zhang, R., Transformation of amorphous 

calcium carbonate nanoparticles into aragonite controlled by ACCBP. CrystEngComm 2016, 

18 (12), 2125-2134. 

39. Addadi, L.; Raz, S.; Weiner, S., Taking advantage of disorder: amorphous calcium 

carbonate and its roles in biomineralization. Advanced Materials 2003, 15 (12), 959-970. 

40. Wang, S.-S.; Xu, A.-W., Amorphous calcium carbonate stabilized by a flexible 

biomimetic polymer inspired by marine mussels. Crystal Growth & Design 2013, 13 (5), 1937-

1942. 

41. Chen, H.; Yang, W.; Chen, H.; Liu, L.; Gao, F.; Yang, X.; Jiang, Q.; Zhang, Q.; Wang, 

Y., Surface modification of mitoxantrone-loaded PLGA nanospheres with chitosan. Colloids 

and Surfaces B: Biointerfaces 2009, 73 (2), 212-218. 



 

 

25 

 

42. Loo, S. C. J.; Ooi, C. P.; Boey, Y. C. F., Influence of electron-beam radiation on the 

hydrolytic degradation behaviour of poly (lactide-co-glycolide)(PLGA). Biomaterials 2005, 26 

(18), 3809-3817. 

43. Wang, M.; Feng, Q.; Guo, X.; She, Z.; Tan, R., A dual microsphere based on PLGA 

and chitosan for delivering the oligopeptide derived from BMP-2. Polymer degradation and 

stability 2011, 96 (1), 107-113. 

44. Rohman, G.; Baker, S. C.; Southgate, J.; Cameron, N. R., Heparin functionalisation of 

porous PLGA scaffolds for controlled, biologically relevant delivery of growth factors for soft 

tissue engineering. Journal of Materials Chemistry 2009, 19 (48), 9265-9273. 

45. Gajendiran, M.; Yousuf, S. M. J.; Elangovan, V.; Balasubramanian, S., Gold 

nanoparticle conjugated PLGA–PEG–SA–PEG–PLGA multiblock copolymer nanoparticles: 

synthesis, characterization, in vivo release of rifampicin. Journal of Materials Chemistry B 

2014, 2 (4), 418-427. 

46. Silva, A. T. C. R.; Cardoso, B. C. O.; e Silva, M. E. S. R.; Freitas, R. F. S.; Sousa, R. 

G., Synthesis, characterization, and study of PLGA copolymer in vitro degradation. Journal of 

Biomaterials and Nanobiotechnology 2015, 6 (01), 8. 

47. Zhu, W.; Lin, J.; Cai, C., The effect of a thermo-responsive polypeptide-based 

copolymer on the mineralization of calcium carbonate. Journal of Materials Chemistry 2012, 

22 (9), 3939-3947. 

48. Tran, M.-K.; Hassani, L. N.; Calvignac, B.; Beuvier, T.; Hindré, F.; Boury, F., 

Lysozyme encapsulation within PLGA and CaCO 3 microparticles using supercritical CO 2 

medium. The Journal of Supercritical Fluids 2013, 79, 159-169. 

49. Seju, U.; Kumar, A.; Sawant, K., Development and evaluation of olanzapine-loaded 

PLGA nanoparticles for nose-to-brain delivery: in vitro and in vivo studies. Acta biomaterialia 

2011, 7 (12), 4169-4176. 

50. Javadzadeh, Y.; Ahadi, F.; Davaran, S.; Mohammadi, G.; Sabzevari, A.; Adibkia, K., 

Preparation and physicochemical characterization of naproxen–PLGA nanoparticles. Colloids 

and Surfaces B: Biointerfaces 2010, 81 (2), 498-502. 

51. Zhu, H.; Chen, H.; Zeng, X.; Wang, Z.; Zhang, X.; Wu, Y.; Gao, Y.; Zhang, J.; Liu, K.; 

Liu, R., Co-delivery of chemotherapeutic drugs with vitamin E TPGS by porous PLGA 

nanoparticles for enhanced chemotherapy against multi-drug resistance. Biomaterials 2014, 35 

(7), 2391-2400. 

52. Mu, L.; Feng, S., A novel controlled release formulation for the anticancer drug 

paclitaxel (Taxol®): PLGA nanoparticles containing vitamin E TPGS. Journal of controlled 

release 2003, 86 (1), 33-48. 

53. Ganji, F.; Abdekhodaie, M. J., Chitosan–g-PLGA copolymer as a thermosensitive 

membrane. Carbohydrate Polymers 2010, 80 (3), 740-746. 

54. Wei, G.; Jin, Q.; Giannobile, W. V.; Ma, P. X., Nano-fibrous scaffold for controlled 

delivery of recombinant human PDGF-BB. Journal of Controlled Release 2006, 112 (1), 103-

110. 

55. Luo, Y.; Shen, H.; Fang, Y.; Cao, Y.; Huang, J.; Zhang, M.; Dai, J.; Shi, X.; Zhang, Z., 

Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene 

oxide-incorporated electrospun poly (lactic-co-glycolic acid) nanofibrous mats. ACS applied 

materials & interfaces 2015, 7 (11), 6331-6339. 

56. Puvaneswary, S.; Raghavendran, H. R. B.; Ibrahim, N. S.; Murali, M. R.; Merican, A. 

M.; Kamarul, T., A comparative study on morphochemical properties and osteogenic cell 

differentiation within bone graft and coral graft culture systems. International journal of 

medical sciences 2013, 10 (12), 1608. 



 

 

26 

 

57. Krebsbach, P.; Kuznetsov, S. A.; Bianco, P.; Gehron Robey, P., Bone marrow stromal 

cells: characterization and clinical application. Critical Reviews in Oral Biology & Medicine 

1999, 10 (2), 165-181. 

58. Ibrahim, N. S.; Krishnamurithy, G.; Raghavendran, H. R. B.; Puvaneswary, S.; Min, N. 

W.; Kamarul, T., Novel HA-PVA/NOCC bilayered scaffold for osteochondral tissue-

engineering applications–Fabrication, characterization, in vitro and in vivo biocompatibility 

study. Materials Letters 2013, 113, 25-29. 

59. Nandi, S.; Roy, S.; Mukherjee, P.; Kundu, B.; De, D.; Basu, D., Orthopaedic 

applications of bone graft & graft substitutes: a review. 2010. 

60. Pellegrini, G.; Seol, Y.; Gruber, R.; Giannobile, W., Pre-clinical models for oral and 

periodontal reconstructive therapies. Journal of dental research 2009, 88 (12), 1065-1076. 

61. Bethel, A.; Kirsch, J. R.; Koehler, R. C.; Finklestein, S. P.; Traystman, R. J., 

Intravenous basic fibroblast growth factor decreases brain injury resulting from focal ischemia 

in cats. Stroke 1997, 28 (3), 609-616. 

62. Ohata, Y.; Ozono, K., Bone and Stem Cells. The mechanism of osteogenic 

differentiation from mesenchymal stem cell. Clinical calcium 2014, 24 (4), 501-508. 

63. Chung, R.; Foster, B. K.; Zannettino, A. C.; Xian, C. J., Potential roles of growth factor 

PDGF-BB in the bony repair of injured growth plate. Bone 2009, 44 (5), 878-885. 

64. Kumar, A.; Salimath, B. P.; Stark, G. B.; Finkenzeller, G., Platelet-derived growth 

factor receptor signaling is not involved in osteogenic differentiation of human mesenchymal 

stem cells. Tissue Engineering Part A 2010, 16 (3), 983-993. 

65. Tokunaga, A.; Oya, T.; Ishii, Y.; Motomura, H.; Nakamura, C.; Ishizawa, S.; Fujimori, 

T.; Nabeshima, Y. i.; Umezawa, A.; Kanamori, M., PDGF receptor β is a potent regulator of 

mesenchymal stromal cell function. Journal of Bone and Mineral Research 2008, 23 (9), 1519-

1528. 

66. Wang, Y.; Mandal, D.; Wang, S.; Kleinerman, E. S.; Pollock, R. E.; Lev, D.; Hayes‐
Jordan, A., Platelet‐derived growth factor receptor β inhibition increases tumor necrosis factor‐
related apoptosis‐inducing ligand (TRAIL) sensitivity. Cancer 2010, 116 (16), 3892-3902. 

67. Vordemvenne, T.; Paletta, J. R.; Hartensuer, R.; Pap, T.; Raschke, M. J.; Ochman, S., 

Cooperative effects in differentiation and proliferation between PDGF-BB and matrix derived 

synthetic peptides in human osteoblasts. BMC musculoskeletal disorders 2011, 12 (1), 263. 

68. Raghavendran, H. R. B.; Mohan, S.; Genasan, K.; Murali, M. R.; Naveen, S. V.; 

Talebian, S.; McKean, R.; Kamarul, T., Synergistic interaction of platelet derived growth factor 

(PDGF) with the surface of PLLA/Col/HA and PLLA/HA scaffolds produces rapid osteogenic 

differentiation. Colloids and Surfaces B: Biointerfaces 2016, 139, 68-78. 

69. Hwang, N. S.; Varghese, S.; Lee, H. J.; Zhang, Z.; Elisseeff, J., Biomaterials directed 

in vivo osteogenic differentiation of mesenchymal cells derived from human embryonic stem 

cells. Tissue Engineering Part A 2013, 19 (15-16), 1723-1732. 

70. Schaller, M. D.; Parsons, J. T., Focal adhesion kinase and associated proteins. Current 

opinion in cell biology 1994, 6 (5), 705-710. 

71. Chai, C.; Leong, K. W., Biomaterials approach to expand and direct differentiation of 

stem cells. Molecular therapy 2007, 15 (3), 467-480. 

72. Bidder, M.; Shao, J.-S.; Charlton-Kachigian, N.; Loewy, A. P.; Semenkovich, C. F.; 

Towler, D. A., Osteopontin transcription in aortic vascular smooth muscle cells is controlled 

by glucose-regulated upstream stimulatory factor and activator protein-1 activities. Journal of 

Biological Chemistry 2002, 277 (46), 44485-44496. 

73. Lee, M.-H.; Kwon, T.-G.; Park, H.-S.; Wozney, J. M.; Ryoo, H.-M., BMP-2-induced 

Osterix expression is mediated by Dlx5 but is independent of Runx2. Biochemical and 

biophysical research communications 2003, 309 (3), 689-694. 



 

 

27 

 

74. Huang, J.; Yuan, L.; Wang, X.; Zhang, T.-L.; Wang, K., Icaritin and its glycosides 

enhance osteoblastic, but suppress osteoclastic, differentiation and activity in vitro. Life 

sciences 2007, 81 (10), 832-840. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Author contribution  

 

SM, PK, EN, and TS executed the lab work, HBR, MRM, KG designed the work protocol, 

constructed the graphs and prepared the manuscript. TK edited the manuscript.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure legends 

 

 

Figure 1a, b and c. Scanning electron microscopy of CORAGRAF (1a), The PLGA 

microsphere encapsulated into the CORAGRAF (1b), CORAGRAF with PLGA microsphere 

with human bone marrow stromal cells (1c). All the samples were fixed with 3% 

glutaraldehyde in PBS for 24 h at 4 °C and processed. Figure 1d Mastersizer of PLGA 
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microsphere using Malvern Mastersizer 2000 particle size analyzer showing the average 

particle size of 137 µm. 

 

Figure 2a-c. Infiltration of PLGA microsphere in CORAGRAF culture system using the 

confocal microscopy. Green color indicates regions stained with FITC in the range of 

approximately 599 µm of 3D CORAGRAF.  

 

Figure 3 a & b Micro-ct analysis of CORAGRAF and CORAGRAF-PLGA loaded scaffold. A 

Micro-CT system (Scanco medical XtremeCT HR pQCT) was used to quantify the 3D 

microstructural properties 

 

Figure 4 a & b BET of CORAGRAF (a) and PLGA microsphere encapsulated into 

CORAGRAF (b). The Brunauer–Emmett–Teller (BET-Autosorb-iQ2) specific surface area of 

the biocomposites was measured from the nitrogen adsorption–desorption isotherms. Inset is 

the corresponding BJH pore size distribution. 

 

Figure 5a-c. Fourier transmission infrared (FTIR) of biocomposites (a), XRD patterns of 

scaffolds (b) and Energy Dispersive Spectroscopy of CORAGRAF and CORAGRAF PLGA 

microsphere (c).  

 

Figure 6a-b. DSC and TGA assay along with in-vitro degradation result of bio-scaffold.  DSC 

analysis was performed to confirm the state of PLGA microspheres in CORAGRAF (a), TGA 

analysis was performed to confirm the existence of PLGA microspheres in CORAGRAF and 

measure their corresponding weight ratio (b), Degradation of CORAGRAF-PLGA composite 

scaffolds upon immersion in PBS for 10 days duration. 

 

 Figure 7a &b. Viability of the cells in the CORAGRAF- PLGA microsphere culture system. 

Post-seeded cells on day 7 were fixed and viewed under the confocal microscope after staining 

the scaffold with Hoechst 33342 cell-permanent nuclear stain. Blue dots indicate the DNA-

stained live cells (a), Viability of cell in CORAGRAF-PLGA microsphere loaded bone marrow 

stromal cells at variable time points. *P <0.05 indicates the levels of significance (b).  

 

Figure 8a Alizarin staining of the control cells and cells treated with the PDGF-BB released 

from the microsphere and direct PDGF-BB treatment. 8b Release of the PDGF-BB from the 

microsphere incubated in the media and CORAGRAF–microsphere culture system incubated 

in the media. Figure 8c Release of the osteogenic marker osteocalcin at variable time points. 

Figure 8d Release of osteocalcin in CORAGRAF-PLGA at variable time points.  *P<0.05 

indicates the level of significance of marker release.  

 

 

Figure 9a, b. Quantitative expression of Runx2, osteopontin (OPN) in CORAGRAF, 

CORAGRAF + PPDGF-BB and CORAGRAF+PLGA+PDGF-BB scaffolds during cell 

differentiation. The total RNA was extracted from hMSCs cultured on the substrates (n = 6) at 

day 0, 7, 14 and 21 using the RNeasy Mini Kit (Qiagen, Chatsworth, CA, USA). Following the 

cDNA synthesis and qPCR, the relative gene expression was normalized to the GAPDH and 

baseline expression. The data were represented as the means ± Standard deviation (SD). The 

statistical significant was set at level P < 0.05, * Represents the comparison between 

CORAGRAF, CORAGRAF + PPDGF-BB and CORAGRAF+PLGA+PDGF-BB 
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Figure 10a, b. Quantitative expression of collagen 1 (Col1) and Bone morphogenic protein 

(BMP2) in CORAGRAF, CORAGRAF + PPDGF-BB and CORAGRAF+PLGA+PDGF-BB 

scaffolds during cell differentiation. The total RNA was extracted from hMSCs cultured on the 

substrates (n = 6) at day 0, 7, 14 and 21 using the RNeasy Mini Kit (Qiagen, Chatsworth, CA, 

USA). Following the cDNA synthesis and qPCR, the relative gene expression was normalized 

to the GAPDH and baseline expression. The data were represented as the means ± Standard 

deviation (SD). The statistical significant was set at level P < 0.05, * Represents the comparison 

between CORAGRAF, CORAGRAF + PPDGF-BB and CORAGRAF+PLGA+PDGF-BB 

 

Figure 11a, b. Quantitative expression of BGALP and osteonectin (ON )in CORAGRAF, 

CORAGRAF + PPDGF-BB and CORAGRAF+PLGA+PDGF-BB scaffolds during cell 

differentiation. The total RNA was extracted from hMSCs cultured on the substrates (n = 6) at 

day 0, 7, 14 and 21 using the RNeasy Mini Kit (Qiagen, Chatsworth, CA, USA). Following the 

cDNA synthesis and qPCR, the relative gene expression was normalized to the GAPDH and 

baseline expression. The data were represented as the means ± Standard deviation (SD). The 

statistical significant was set at level P < 0.05, * Represents the comparison between 

CORAGRAF, CORAGRAF + PPDGF-BB and CORAGRAF+PLGA+PDGF-BB 
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