408 research outputs found

    Quantum Hall effects in layered disordered superconductors

    Full text link
    Layered singlet paired superconductors with disorder and broken time reversal symmetry are studied. The phase diagram demonstrates charge-spin separation in transport. In terms of the average intergrain transmission and the interlayer tunnelling we find quantum Hall phases with spin Hall coefficients of 0 and 2 separated by a spin metal phase. We identify a spin metal-insulator localization exponent as well as a spin conductivity exponent of ~0.9. In presence of a Zeeman term an additional phase with spin Hall coefficient of 1 appears.Comment: 4 pages, 4 figure

    Disorder Induced Transitions in Layered Coulomb Gases and Superconductors

    Full text link
    A 3D layered system of charges with logarithmic interaction parallel to the layers and random dipoles is studied via a novel variational method and an energy rationale which reproduce the known phase diagram for a single layer. Increasing interlayer coupling leads to successive transitions in which charge rods correlated in N>1 neighboring layers are nucleated by weaker disorder. For layered superconductors in the limit of only magnetic interlayer coupling, the method predicts and locates a disorder-induced defect-unbinding transition in the flux lattice. While N=1 charges dominate there, N>1 disorder induced defect rods are predicted for multi-layer superconductors.Comment: 4 pages, 2 figures, RevTe

    Second magnetization peak in flux lattices: the decoupling scenario

    Full text link
    The second peak phenomena of flux lattices in layered superconductors is described in terms of a disorder induced layer decoupling transition. For weak disorder the tilt mudulus undergoes an apparent discontinuity which leads to an enhanced critical current and reduced domain size in the decoupled phase. The Josephson plasma frequency is reduced by decoupling and by Josephson glass pinning; in the liquid phase it varies as 1/[BT(T+T_0)] where T is temperature, B is field and T_0 is the disorder dependent temperature of the multicritical point.Comment: 5 pages, 1 eps figure, Revtex. Minor changes, new reference

    Zero temperature geometric spin dephasing on a ring in presence of an Ohmic environment

    Full text link
    We study zero temperature spin dynamics of a particle confined to a ring in presence of spin orbit coupling and Ohmic electromagnetic fluctuations. We show that the dynamics of the angular position θ(t)\theta(t) are decoupled from the spin dynamics and that the latter is mapped to certain correlations of a spinless particle. We find that the spin correlations in the zz direction (perpendicular to the ring) are finite at long times, i.e. do not dephase. The parallel (in plane) components for spin \half do not dephase at weak dissipation but they probably decay as a power law with time at strong dissipation.Comment: 5 pages, submitted to EP

    Decoherence of a particle in a ring

    Full text link
    We consider a particle coupled to a dissipative environment and derive a perturbative formula for the dephasing rate based on the purity of the reduced probability matrix. We apply this formula to the problem of a particle on a ring, that interacts with a dirty metal environment. At low but finite temperatures we find a dephasing rate T3/2\propto T^{3/2}, and identify dephasing lengths for large and for small rings. These findings shed light on recent Monte Carlo data regarding the effective mass of the particle. At zero temperature we find that spatial fluctuations suppress the possibility of having a power law decay of coherence.Comment: 5 pages, 1 figure, proofed version to be published in EP

    Level statistics for quantum Hall systems

    No full text
    Level statistics for two classes of disordered systems at criticality are analyzed in terms of different realizations of the Chalker–Coddington network model. These include: 1) Re-examination of the standard U(1) model describing dynamics of electrons on the lowest Landau level in the quantum Hall effect, where it is shown that after proper local unfolding the nearest-neighbor spacing distribution (NNSD) at the critical energy follows the Wigner surmise for Gaussian unitary ensembles (GUE). 2) Quasi-particles in disordered superconductors with broken time reversal and spin rotation invariance (in the language of random matrix theory this system is a representative of symmetry class D in the classification scheme of Altland and Zirnbauer). Here again the NNSD obeys the Wigner surmise for GUE, reflecting therefore only «basic» discrete symmetries of the system (time reversal violation) and ignoring particle–hole symmetries and other finer details (criticality). In the localized regime level repulsion is suppressed

    Critical Behavior of the Flux-line Tension in Extreme Type-II Superconductors

    Full text link
    The entropic corrections to the flux-line energy of extreme type-II superconductors are computed using a schematic dual Villain model description of the flux quanta. We find that the temperature profile of the lower-critical field vanishes polynomially at the transition with an exponent ν2/3\nu\cong 2/3 in the isotropic case, while it exhibits an inflection point for the case of weakly coupled layers in parallel magnetic field. It is argued that vestiges of these effects have already been observed in high-temperature superconductors.Comment: 12 pages of plain TeX, 2 postscipt figures, to appear in Phys. Rev.

    W(h)ither Fossils? Studying Morphological Character Evolution in the Age of Molecular Sequences

    Get PDF
    A major challenge in the post-genomics era will be to integrate molecular sequence data from extant organisms with morphological data from fossil and extant taxa into a single, coherent picture of phylogenetic relationships; only then will these phylogenetic hypotheses be effectively applied to the study of morphological character evolution. At least two analytical approaches to solving this problem have been utilized: (1) simultaneous analysis of molecular sequence and morphological data with fossil taxa included as terminals in the analysis, and (2) the molecular scaffold approach, in which morphological data are analyzed over a molecular backbone (with constraints that force extant taxa into positions suggested by sequence data). The perceived obstacles to including fossil taxa directly in simultaneous analyses of morphological and molecular sequence data with extant taxa include: (1) that fossil taxa are missing the molecular sequence portion of the character data; (2) that morphological characters might be misleading due to convergence; and (3) character weighting, specifically how and whether to weight characters in the morphological partition relative to characters in the molecular sequence data partition. The molecular scaffold has been put forward as a potential solution to at least some of these problems. Using examples of simultaneous analyses from the literature, as well as new analyses of previously published morphological and molecular sequence data matrices for extant and fossil Chiroptera (bats), we argue that the simultaneous analysis approach is superior to the molecular scaffold approach, specifically addressing the problems to which the molecular scaffold has been suggested as a solution. Finally, the application of phylogenetic hypotheses including fossil taxa (whatever their derivation) to the study of morphological character evolution is discussed, with special emphasis on scenarios in which fossil taxa are likely to be most enlightening: (1) in determining the sequence of character evolution; (2) in determining the timing of character evolution; and (3) in making inferences about the presence or absence of characteristics in fossil taxa that may not be directly observable in the fossil record. Published By: Missouri Botanical Garde

    Decoupling and decommensuration in layered superconductors with columnar defects

    Full text link
    We consider layered superconductors with a flux lattice perpendicular to the layers and random columnar defects parallel to the magnetic field B. We show that the decoupling transition temperature Td, at which the Josephson coupling vanishes, is enhanced by columnar defects by an amount ~B^2 relative to Td. Decoupling by increasing field can be followed by a reentrant recoupling transition for strong disorder. We also consider a commensurate component of the columnar density and show that its pinning potential is renormalized to zero above a critical long wavelength disorder. This decommnesuration transition may account for a recently observed kink in the melting line.Comment: 5 pages, Revte

    Dephasing of a particle in a dissipative environment

    Full text link
    The motion of a particle in a ring of length L is influenced by a dirty metal environment whose fluctuations are characterized by a short correlation distance <<L\ell << L. We analyze the induced decoherence process, and compare the results with those obtained in the opposing Caldeira-Leggett limit (>>L\ell >> L). A proper definition of the dephasing factor that does not depend on a vague semiclassical picture is employed. Some recent Monte-Carlo results about the effect of finite temperatures on "mass renormalization" in this system are illuminated.Comment: 18 pages, 2 figures, some textual improvements, to be published in JP
    corecore