200,875 research outputs found

    Quantum-disordered slave-boson theory of underdoped cuprates

    Full text link
    We study the stability of the spin gap phase in the U(1) slave-boson theory of the t-J model in connection to the underdoped cuprates. We approach the spin gap phase from the superconducting state and consider the quantum phase transition of the slave-bosons at zero temperature by introducing vortices in the boson superfluid. At finite temperatures, the properties of the bosons are different from those of the strange metal phase and lead to modified gauge field fluctuations. As a result, the spin gap phase can be stabilized in the quantum critical and quantum disordered regime of the boson system. We also show that the regime of quantum disordered bosons with the paired fermions can be regarded as the strong coupling version of the recently proposed nodal liquid theory.Comment: 5 pages, Replaced by the published versio

    The effects of surface finish and grain size on the strength of sintered silicon carbide

    Get PDF
    The effects of surface treatment and microstructure, especially abnormal grain growth, on the strength of sintered SiC were studied. The surfaces of sintered SiC were treated with 400, 800 and 1200 grit diamond wheels. Grain growth was induced by increasing the sintering times at 2050 C. The beta to alpha transformation occurred during the sintering of beta-phase starting materials and was often accompanied by abnormal grain growth. The overall strength distributions were established using Weibull statistics. The strength of the sintered SiC is limited by extrinsic surface flaws in normal-sintered specimens. The finer the surface finish and grain size, the higher the strength. But the strength of abnormal sintering specimens is limited by the abnormally grown large tabular grains. The Weibull modulus increases with decreasing grain size and decreasing grit size for grinding

    Reliability of the beamsplitter based Bell-state measurement

    Full text link
    A linear 50/50 beamsplitter, together with a coincidence measurement, has been widely used in quantum optical experiments, such as teleportation, dense coding, etc., for interferometrically distinguishing, measuring, or projecting onto one of the four two-photon polarization Bell-states ∣ψ(−)>|\psi^{(-)}>. In this paper, we demonstrate that the coincidence measurement at the output of a beamsplitter cannot be used as an absolute identifier of the input state ∣ψ(−)>|\psi^{(-)}> nor as an indication that the input photons have projected to the ∣ψ(−)>|\psi^{(-)}> state.Comment: 4 pages, two-colum
    • …
    corecore