1,088 research outputs found
Transmission phase of a quantum dot: Testing the role of population switching
We propose a controlled experiment to clarify the physical mechanism causing
phase lapses of the amplitude for electron transmission through nanoscale
devices. Such lapses are generically observed in valleys between adjacent
Coulomb--blockade peaks. The experiment involves two quantum dots embedded in
the same arm of an Aharonov--Bohm interferometer. It offers a decisive test of
"population switching", one of the leading contenders for an explanation of the
phenomenon.Comment: 4 pages, 4 figure
Yang-Lee Edge Singularity on a Class of Treelike Lattices
The density of zeros of the partition function of the Ising model on a class
of treelike lattices is studied. An exact closed-form expression for the
pertinent critical exponents is derived by using a couple of recursion
relations which have a singular behavior near the Yang-Lee edge.Comment: 9 pages AmsTex, 2 eps figures, to appear in J.Phys.
Critical Behavior of the Ferromagnetic Ising Model on a Sierpinski Carpet: Monte Carlo Renormalization Group Study
We perform a Monte Carlo Renormalization Group analysis of the critical
behavior of the ferromagnetic Ising model on a Sierpi\'nski fractal with
Hausdorff dimension . This method is shown to be relevant to
the calculation of the critical temperature and the magnetic
eigen-exponent on such structures. On the other hand, scaling corrections
hinder the calculation of the temperature eigen-exponent . At last, the
results are shown to be consistent with a finite size scaling analysis.Comment: 16 pages, 7 figure
Mesoscopic to universal crossover of transmission phase of multi-level quantum dots
Transmission phase \alpha measurements of many-electron quantum dots (small
mean level spacing \delta) revealed universal phase lapses by \pi between
consecutive resonances. In contrast, for dots with only a few electrons (large
\delta), the appearance or not of a phase lapse depends on the dot parameters.
We show that a model of a multi-level quantum dot with local Coulomb
interactions and arbitrary level-lead couplings reproduces the generic features
of the observed behavior. The universal behavior of \alpha for small \delta
follows from Fano-type antiresonances of the renormalized single-particle
levels.Comment: 4 pages, version accepted for publication in PR
Weak values of electron spin in a double quantum dot
We propose a protocol for a controlled experiment to measure a weak value of
the electron's spin in a solid state device. The weak value is obtained by a
two step procedure -- weak measurement followed by a strong one
(post-selection), where the outcome of the first measurement is kept provided a
second post-selected outcome occurs. The set-up consists of a double quantum
dot and a weakly coupled quantum point contact to be used as a detector.
Anomalously large values of the spin of a two electron system are predicted, as
well as negative values of the total spin. We also show how to incorporate the
adverse effect of decoherence into this procedure.Comment: 4+ pages, 3 figures, final published versio
Dimer coverings on the Sierpinski gasket with possible vacancies on the outmost vertices
We present the number of dimers on the Sierpinski gasket
at stage with dimension equal to two, three, four or five, where one of
the outmost vertices is not covered when the number of vertices is an
odd number. The entropy of absorption of diatomic molecules per site, defined
as , is calculated to be
exactly for . The numbers of dimers on the generalized
Sierpinski gasket with and are also obtained
exactly. Their entropies are equal to , , ,
respectively. The upper and lower bounds for the entropy are derived in terms
of the results at a certain stage for with . As the
difference between these bounds converges quickly to zero as the calculated
stage increases, the numerical value of with can be
evaluated with more than a hundred significant figures accurate.Comment: 35 pages, 20 figures and 1 tabl
Transmission phase lapses in quantum dots: the role of dot-lead coupling asymmetry
Lapses of transmission phase in transport through quantum dots are ubiquitous
already in the absence of interaction, in which case their precise location is
determined by the signs and magnitudes of the tunnelling matrix elements.
However, actual measurements for a quantum dot embedded in an Aharonov-Bohm
interferometer show systematic sequences of phase lapses separated by Coulomb
peaks -- an issue that attracted much attention and generated controversy.
Using a two-level quantum dot as an example we show that this phenomenon can be
accounted for by the combined effect of asymmetric dot-lead couplings (left
lead/right lead asymmetry as well as different level broadening for different
levels) and interaction-induced "population switching" of the levels, rendering
this behaviour generic. We construct and analyse a mean field scheme for an
interacting quantum dot, and investigate the properties of the mean field
solution, paying special attention to the character of its dependence
(continuous vs. discontinuous) on the chemical potential or gate voltage.Comment: 34 LaTeX pages in IOP format, 9 figures; misprints correcte
- …