201 research outputs found

    Magneto-structural properties of the layered quasi-2D triangular-lattice antiferromagnets Cs2_2CuCl4x_{4-x}Brx_x for x{x} = 0,1,2 and 4

    Full text link
    We present a study of the magnetic susceptibility χmol\chi_{mol} under variable hydrostatic pressure on single crystals of Cs2_2CuCl4x_{4-x}Brx_x. This includes the border compounds \textit{x} = 0 and 4, known as good realizations of the distorted triangular-lattice spin-1/2 Heisenberg antiferromagnet, as well as the isostructural stoichiometric systems Cs2_2CuCl3_{3}Br1_1 and Cs2_2CuCl2_{2}Br2_2. For the determination of the exchange coupling constants JJ and JJ^{\prime}, χmol\chi_{mol} data were fitted by a JJJ-J^{\prime} model \cite{Schmidt2015}. Its application, validated for the border compounds, yields a degree of frustration JJ^{\prime}/JJ = 0.47 for Cs2_2CuCl3_3Br1_1 and JJ^{\prime}/JJ \simeq 0.63 - 0.78 for Cs2_2CuCl2_2Br2_2, making these systems particular interesting representatives of this family. From the evolution of the magnetic susceptibility under pressure up to about 0.4\,GPa, the maximum pressure applied, two observations were made for all the compounds investigated here. First, we find that the overall energy scale, given by Jc=(J2J_c = (J^2 + J2J^{\prime 2})1/2^{1/2}, increases under pressure, whereas the ratio JJ^{\prime}/JJ remains unchanged in this pressure range. These experimental observations are in accordance with the results of DFT calculations performed for these materials. Secondly, for the magnetoelastic coupling constants, extraordinarily small values are obtained. We assign these observations to a structural peculiarity of this class of materials

    Realization of a single Josephson junction for Bose-Einstein condensates

    Full text link
    We report on the realization of a double-well potential for Rubidium-87 Bose-Einstein condensates. The experimental setup allows the investigation of two different dynamical phenomena known for this system - Josephson oscillations and self-trapping. We give a detailed discussion of the experimental setup and the methods used for calibrating the relevant parameters. We compare our experimental findings with the predictions of an extended two-mode model and find quantitative agreement

    Comparative Study of Human and Automated Screening for Antinuclear Antibodies by Immunofluorescence on HEp-2 Cells

    Get PDF
    Background: Several automated systems had been developed in order to reduce inter-observer variability in indirect immunofluorescence (IIF) interpretation. We aimed to evaluate the performance of a processing system in antinuclear antibodies (ANA) screening on HEp-2 cells. Patients and Methods: This study included 64 ANA-positive sera and 107 ANA-negative sera that underwent IIF on two commercial kits of HEp-2 cells (BioSystems® and Euroimmun®). IIF results were compared with a novel automated interpretation system, the “CyclopusCADImmuno®” (CAD). Results: All ANA-positive sera images were recognized as positive by CAD (sensitivity = 100%), while 17 (15.9%) of the ANA-negative sera images were interpreted as positive (specificity = 84.1%), =0.799 (SD=0.045). Comparison of IIF pattern determination between human and CAD system revealed on HEp-2 (BioSystems®), a complete concordance in 6 (9.37%) sera, a partial concordance (sharing of at least 1 pattern) in 42 (65.6%) cases and in 16 (25%) sera the pattern interpretation was discordant. Similarly, on HEp-2 (Euroimmun®) the concordance in pattern interpretation was total in 5 (7.8%) sera, partial in 39 (60.9%) and absent in 20 (31.25%). For both tested HEp-2 cells kits agreement was enhanced for the most common patterns, homogenous, fine speckled and coarse speckled. While there was an issue in identification of nucleolar, dots and nuclear membranous patterns by CAD. Conclusion: Assessment of ANA by IIF on HEp-2 cells using the automated interpretation system, the “CyclopusCADImmuno®” is a reliable method for positive/negative differentiation. Continuous integration of IIF images would improve the pattern identification by the CAD

    Josephson dynamics for coupled polariton modes under the atom-field interaction in the cavity

    Full text link
    We consider a new approach to the problem of Bose-Einstein condensation (BEC) of polaritons for atom-field interaction under the strong coupling regime in the cavity. We investigate the dynamics of two macroscopically populated polariton modes corresponding to the upper and lower branch energy states coupled via Kerr-like nonlinearity of atomic medium. We found out the dispersion relations for new type of collective excitations in the system under consideration. Various temporal regimes like linear (nonlinear) Josephson transition and/or Rabi oscillations, macroscopic quantum self-trapping (MQST) dynamics for population imbalance of polariton modes are predicted. We also examine the switching properties for time-averaged population imbalance depending on initial conditions, effective nonlinear parameter of atomic medium and kinetic energy of low-branch polaritons.Comment: 10 pages, 6 postscript figures, uses svjour.cl

    Inter-subunit coupling enables fast CO2-fixation by reductive carboxylases

    Get PDF
    Enoyl-CoA carboxylases/reductases (ECRs) are some of the most efficient CO2-fixing enzymes described to date. However, the molecular mechanisms underlying the extraordinary catalytic activity of ECRs on the level of the protein assembly remain elusive. Here we used a combination of ambient-temperature X-ray free electron laser (XFEL) and cryogenic synchrotron experiments to study the structural organization of the ECR from Kitasatospora setae. The K. setae ECR is a homotetramer that differentiates into a pair of dimers of open- and closed-form subunits in the catalytically active state. Using molecular dynamics simulations and structure-based mutagenesis, we show that catalysis is synchronized in the K. setae ECR across the pair of dimers. This conformational coupling of catalytic domains is conferred by individual amino acids to achieve high CO2-fixation rates. Our results provide unprecedented insights into the dynamic organization and synchronized inter- and intrasubunit communications of this remarkably efficient CO2-fixing enzyme during catalysis.

    Macroscopic superposition states of ultracold bosons in a double-well potential

    Full text link
    We present a thorough description of the physical regimes for ultracold bosons in double wells, with special attention paid to macroscopic superpositions (MSs). We use a generalization of the Lipkin-Meshkov-Glick Hamiltonian of up to eight single particle modes to study these MSs, solving the Hamiltonian with a combination of numerical exact diagonalization and high-order perturbation theory. The MS is between left and right potential wells; the extreme case with all atoms simultaneously located in both wells and in only two modes is the famous NOON state, but our approach encompasses much more general MSs. Use of more single particle modes brings dimensionality into the problem, allows us to set hard limits on the use of the original two-mode LMG model commonly treated in the literature, and also introduces a new mixed Josephson-Fock regime. Higher modes introduce angular degrees of freedom and MS states with different angular properties.Comment: 15 pages, 8 figures, 1 table. Mini-review prepared for the special issue of Frontiers of Physics "Recent Progresses on Quantum Dynamics of Ultracold Atoms and Future Quantum Technologies", edited by Profs. Lee, Ueda, and Drummon

    Preliminary results of the project A.I.D.A. (Auto Immunity: Diagnosis Assisted by computer)

    Get PDF
    In this paper, are presented the preliminary results of the A.I.D.A. (Auto Immunity: Diagnosis Assisted by computer) project which is developed in the frame of the cross-border cooperation Italy-Tunisia. According to the main objectives of this project, a database of interpreted Indirect ImmunoFluorescence (IIF) images on HEp 2 cells is being collected thanks to the contribution of Italian and Tunisian experts involved in routine diagnosis of autoimmune diseases. Through exchanging images and double reporting; a Gold Standard database, containing around 1000 double reported IIF images with different patterns including negative tests, has been settled. This Gold Standard database has been used for optimization of a computing solution (CADComputer Aided Detection) and for assessment of its added value in order to be used along with an immunologist as a second reader in detection of auto antibodies for autoimmune disease diagnosis. From the preliminary results obtained, the CAD appeared more powerful than junior immunologists used as second readers and may significantly improve their efficacy
    corecore