1,400 research outputs found
Domain walls with non-Abelian orientational moduli
Domain walls with non-Abelian orientational moduli are constructed in U(N)
gauge theories coupled to Higgs scalar fields with degenerate masses. The
associated global symmetry is broken by the domain walls, resulting in the
Nambu-Goldstone (and quasi-Nambu-Goldstone) bosons, which form the non-Abelian
orientational moduli. As walls separate, the wave functions of the non-Abelian
orientational moduli spread between domain walls. By taking the limit of Higgs
mass differences to vanish, we clarify the convertion of wall position moduli
into the non-Abelian orientational moduli. The moduli space metric and its
Kahler potential of the effective field theory on the domain walls are
constructed. We consider two models: a U(1) gauge theory with several charged
Higgs fields, and a U(N) gauge theory with 2N Higgs fields in the fundamental
representation. More details are found in our paper published in Phys. Rev. D77
(2008) 125008 [arXiv:0802.3135 [hep-th]].Comment: contribution to the Proceedings of he 1st MCCQG conference at Crete,
sept. 2009, to appear in Journal of Physics: Conference Series of IO
Zero-modes of Non-Abelian Solitons in Three Dimensional Gauge Theories
We study non-Abelian solitons of the Bogomol'nyi type in N=2 (d=2+1)
supersymmetric Chern-Simons (CS) and Yang-Mills (YM) theory with a generic
gauge group. In CS theory, we find topological, non-topological and semi-local
(non-)topological vortices of non-Abelian kinds in unbroken, broken and
partially broken vacua. We calculate the number of zero-modes using an index
theorem and then we apply the moduli matrix formalism to realize the moduli
parameters. For the topological solitons we exhaust all the moduli while we
study several examples of the non-topological and semi-local solitons. We find
that the zero-modes of the topological solitons are governed by the moduli
matrix H_0 only and those of the non-topological solitons are governed by both
H_0 and the gauge invariant field \Omega. We prove local uniqueness of the
master equation in the YM case and finally, compare all results between the CS
and YM theories.Comment: 54 pages, 1 figur
Group Theory of Non-Abelian Vortices
We investigate the structure of the moduli space of multiple BPS non-Abelian
vortices in U(N) gauge theory with N fundamental Higgs fields, focusing our
attention on the action of the exact global (color-flavor diagonal) SU(N)
symmetry on it. The moduli space of a single non-Abelian vortex, CP(N-1), is
spanned by a vector in the fundamental representation of the global SU(N)
symmetry. The moduli space of winding-number k vortices is instead spanned by
vectors in the direct-product representation: they decompose into the sum of
irreducible representations each of which is associated with a Young tableau
made of k boxes, in a way somewhat similar to the standard group composition
rule of SU(N) multiplets. The K\"ahler potential is exactly determined in each
moduli subspace, corresponding to an irreducible SU(N) orbit of the
highest-weight configuration.Comment: LaTeX 46 pages, 4 figure
Non-Abelian vortex dynamics: Effective world-sheet action
The low-energy vortex effective action is constructed in a wide class of
systems in a color-flavor locked vacuum, which generalizes the results found
earlier in the context of U(N) models. It describes the weak fluctuations of
the non-Abelian orientational moduli on the vortex worldsheet. For instance,
for the minimum vortex in SO(2N) x U(1) or USp(2N) x U(1) gauge theories, the
effective action found is a two-dimensional sigma model living on the Hermitian
symmetric spaces SO(2N)/U(N) or USp(2N)/U(N), respectively. The fluctuating
moduli have the structure of that of a quantum particle state in spinor
representations of the GNO dual of the color-flavor SO(2N) or USp(2N) symmetry,
i.e. of SO(2N) or of SO(2N+1). Applied to the benchmark U(N) model our
procedure reproduces the known CP(N-1) worldsheet action; our recipe allows us
to obtain also the effective vortex action for some higher-winding vortices in
U(N) and SO(2N) theories.Comment: LaTeX, 25 pages, 0 figure
Vortex counting from field theory
The vortex partition function in 2d N = (2,2) U(N) gauge theory is derived
from the field theoretical point of view by using the moduli matrix approach.
The character for the tangent space at each moduli space fixed point is written
in terms of the moduli matrix, and then the vortex partition function is
obtained by applying the localization formula. We find that dealing with the
fermionic zero modes is crucial to obtain the vortex partition function with
the anti-fundamental and adjoint matters in addition to the fundamental chiral
multiplets. The orbifold vortex partition function is also investigated from
the field theoretical point of view.Comment: 21 pages, no figure
Vortices on Orbifolds
The Abelian and non-Abelian vortices on orbifolds are investigated based on
the moduli matrix approach, which is a powerful method to deal with the BPS
equation. The moduli space and the vortex collision are discussed through the
moduli matrix as well as the regular space. It is also shown that a quiver
structure is found in the Kahler quotient, and a half of ADHM is obtained for
the vortex theory on the orbifolds as the case before orbifolding.Comment: 25 pages, 4 figures; references adde
Valence instability of cerium under pressure in the Kondo-like perovskite LaCeSrMnO
Effect of hydrostatic pressure and magnetic field on electrical resistance of
the Kondo-like perovskite manganese oxide,
LaCeSrMnO with a ferrimagnetic ground state, have
been investigated up to 2.1 GPa and 9 T. In this compound, the Mn-moments
undergo double exchange mediated ferromagnetic ordering at
280 K and there is a resistance maximum, at about 130 K which is
correlated with an antiferromagnetic ordering of {\it cerium} with respect to
the Mn-sublattice moments. Under pressure, the shifts to lower
temperature at a rate of d/d = -162 K/GPa and disappears at a
critical pressure 0.9 GPa. Further, the coefficient, of
term due to Kondo scattering decreases linearly with increase of
pressure showing an inflection point in the vicinity of . These
results suggest that {\it cerium} undergoes a transition from Ce state
to Ce/Ce mixed valence state under pressure. In contrast to
pressure effect, the applied magnetic field shifts to higher
temperature presumably due to enhanced ferromagnetic Mn moments.Comment: to be published in Phys. Rev. B (rapid commun
Coherent manipulation of electronic states in a double quantum dot
We investigate coherent time-evolution of charge states (pseudo-spin qubit)
in a semiconductor double quantum dot. This fully-tunable qubit is manipulated
with a high-speed voltage pulse that controls the energy and decoherence of the
system. Coherent oscillations of the qubit are observed for several
combinations of many-body ground and excited states of the quantum dots.
Possible decoherence mechanisms in the present device are also discussed.Comment: RevTe
- …