6,485 research outputs found
A quasi-time-dependent radiative transfer model of OH104.9+2.4
We investigate the pulsation-phase dependent properties of the circumstellar
dust shell (CDS) of the OH/IR star OH104.9+2.4 based on radiative transfer
modeling (RTM) using the code DUSTY. Our previous study concerning simultaneous
modeling of the spectral energy distribution (SED) and near-infrared (NIR)
visibilities (Riechers et al. 2004) has now been extended by means of a more
detailed analysis of the pulsation-phase dependence of the model parameters of
OH104.9+2.4. In order to investigate the temporal variation in the spatial
structure of the CDS, additional NIR speckle interferometric observations in
the K' band were carried out with the 6 m telescope of the Special
Astrophysical Observatory (SAO). At a wavelength of 2.12 micron the
diffraction-limited resolution of 74 mas was attained. Several key parameters
of our previous best-fitting model had to be adjusted in order to be consistent
with the newly extended amount of observational data. It was found that a
simple rescaling of the bolometric flux F_bol is not sufficient to take the
variability of the source into account, as the change in optical depth over a
full pulsation cycle is rather high. On the other hand, the impact of a change
in effective temperature T_eff on SED and visibility is rather small. However,
observations, as well as models for other AGB stars, show the necessity of
including a variation of T_eff with pulsation phase in the radiative transfer
models. Therefore, our new best-fitting model accounts for these changes.Comment: 7 pages, including 5 postscript figures and 3 tables. Published in
Astronomy and Astrophysics. (v1: accepted version; v2: published version,
minor grammatical changes
Fracture toughness and crack-resistance curve behavior in metallic glass-matrix composites
Nonlinear-elastic fracture mechanics methods are used to assess the fracture toughness of bulk metallic glass (BMG) composites; results are compared with similar measurements for other monolithic and composite BMG alloys. Mechanistically, plastic shielding gives rise to characteristic resistance-curve behavior where the fracture resistance increases with crack extension. Specifically, confinement of damage by second-phase dendrites is shown to result in enhancement of the toughness by nearly an order of magnitude relative to unreinforced glass
Interplay between carrier and impurity concentrations in annealed GaMnAs intrinsic anomalous Hall Effect
Investigating the scaling behavior of annealed GaMnAs anomalous
Hall coefficients, we note a universal crossover regime where the scaling
behavior changes from quadratic to linear, attributed to the anomalous Hall
Effect intrinsic and extrinsic origins, respectively. Furthermore, measured
anomalous Hall conductivities when properly scaled by carrier concentration
remain constant, equal to theoretically predicated values, spanning nearly a
decade in conductivity as well as over 100 K in T. Both the qualitative
and quantitative agreement confirms the validity of new equations of motion
including the Berry phase contributions as well as tunablility of the intrinsic
anomalous Hall Effect.Comment: 4 pages, 5 figure
Excitation temperature, degree of ionization of added iron species, and electron density in an exploding thin film plasma
Time and spacially resolved spectra of a cylindrically symmetric exploding thin film plasma were obtained with a rotating mirror camera and astigmatic imaging. These spectra were decouvolved to obtain relative spectral emissivity profiles for nine Fe(II) and two Fe(I) lines. The effective (electronic) excitation temperature at various positions in the plasma and at various times during the first current halfcycle was computed from the Fe(II) emissivity values using the Boltzmann graphical method. The Fe(II)/Fe(I) emissivity ratios together with the temperature were used to determine the degree of ionization of Fe. Finally, the electron density was estimated from the Saha equilibrium. Electronic excitation temperatures range from 10,000-15,000 K near the electrode surface at peak discharge current to 7000-10,000 K at 6-10 mm above the electrode surface at the first current zero. Corresponding electron densities range from 1017-1018 cm-3 at peak current to 1015-1016cm-3 near zero current. Error propagation and criteria for thermodynamic equilibrium are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24579/1/0000862.pd
Putative spin liquid in the triangle-based iridate BaIrTiO
We report on thermodynamic, magnetization, and muon spin relaxation
measurements of the strong spin-orbit coupled iridate BaIrTiO,
which constitutes a new frustration motif made up a mixture of edge- and
corner-sharing triangles. In spite of strong antiferromagnetic exchange
interaction of the order of 100~K, we find no hint for long-range magnetic
order down to 23 mK. The magnetic specific heat data unveil the -linear and
-squared dependences at low temperatures below 1~K. At the respective
temperatures, the zero-field muon spin relaxation features a persistent spin
dynamics, indicative of unconventional low-energy excitations. A comparison to
the isostructural compound BaRuTiO suggests that a concerted
interplay of compass-like magnetic interactions and frustrated geometry
promotes a dynamically fluctuating state in a triangle-based iridate.Comment: Physical Review B accepte
Electrical Switching Dynamics in Circular and Rectangular Ge2Sb2Te5 Nanopillar Phase Change Memory Devices
We have measured the critical phase change conditions induced by electrical
pulses in Ge2Sb2Te5 nanopillar phase change memory devices by constructing a
comprehensive resistance map as a function of pulse parameters (width,
amplitude and trailing edge). Our measurements reveal that the heating scheme
and the details of the contact geometry play the dominant role in determining
the final phase composition of the device such that a non-uniform heating
scheme promotes partial amorphization/crystallization for a wide range of pulse
parameters enabling multiple resistance levels for data storage applications.
Furthermore we find that fluctuations in the snap-back voltage and set/reset
resistances in repeated switching experiments are related to the details of the
current distribution such that a uniform current injection geometry (i.e.
circular contact) favors more reproducible switching parameters. This shows
that possible geometrical defects in nanoscale phase change memory devices may
play an essential role in the performance of the smallest possible devices
through modification of the exact current distribution in the active
chalcogenide layer. We present a three-dimensional finite element model of the
electro-thermal physics to provide insights into the underlying physical
mechanisms of the switching dynamics as well as to quantitatively account for
the scaling behaviour of the switching currents in both circular and
rectangular contact geometries. The calculated temporal evolution of the heat
distribution within the pulse duration shows distinct features in rectangular
contacts providing evidence for locally hot spots at the sharp corners of the
current injection site due to current crowding effects leading to the observed
behaviour
Cdk5 Phosphorylates Dopamine D2 Receptor and Attenuates Downstream Signaling
The dopamine D2 receptor (DRD2) is a key receptor that mediates dopamine-associated brain functions such as mood, reward, and emotion. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase whose function has been implicated in the brain reward circuit. In this study, we revealed that the serine 321 residue (S321) in the third intracellular loop of DRD2 (D2i3) is a novel regulatory site of Cdk5. Cdk5-dependent phosphorylation of S321 in the D2i3 was observed in in vitro and cell culture systems. We further observed that the phosphorylation of S321 impaired the agonist-stimulated surface expression of DRD2 and decreased G protein coupling to DRD2. Moreover, the downstream cAMP pathway was affected in the heterologous system and in primary neuronal cultures from p35 knockout embryos likely due to the reduced inhibitory activity of DRD2. These results indicate that Cdk5-mediated phosphorylation of S321 inhibits DRD2 function, providing a novel regulatory mechanism for dopamine signaling.X111111sciescopu
Spin Dynamics in the LTT Phase of ~1/8 Doped Single Crystal La_{1.67}Eu_{0.2}Sr_{0.13}CuO_4
We present La and Cu NMR relaxation measurements in single crystal
La_{1.67}Eu_{0.2}Sr_{0.13}CuO_4. A strong peak in the La spin-lattice
relaxation rate observed in the spin ordered state is well-described by the BPP
mechanism[1] and arises from continuous slowing of electronic spin fluctuations
with decreasing temperature; these spin fluctuations exhibit XY-like anisotropy
in the ordered state. The spin pseudogap is enhanced by the static
charge-stripe order in the LTT phase.Comment: Four pages, three figure
The DEIMOS 10k spectroscopic survey catalog of the COSMOS field
We present a catalog of 10718 objects in the COSMOS field observed through
multi-slit spectroscopy with the Deep Imaging Multi-Object Spectrograph
(DEIMOS) on the Keck II telescope in the wavelength range ~5500-9800A. The
catalog contains 6617 objects with high-quality spectra (two or more spectral
features), and 1798 objects with a single spectroscopic feature confirmed by
the photometric redshift. For 2024 typically faint objects we could not obtain
reliable redshifts. The objects have been selected from a variety of input
catalogs based on multi-wavelength observations in the field, and thus have a
diverse selection function, which enables the study of the diversity in the
galaxy population. The magnitude distribution of our objects is peaked at
I_AB~23 and K_AB~21, with a secondary peak at K_AB~24. We sample a broad
redshift distribution in the range 0<z<6, with one peak at z~1, and another one
around z~4. We have identified 13 redshift spikes at z>0.65 with chance
probabilities <4xE-4$, some of which are clearly related to protocluster
structures of sizes >10 Mpc. An object-to-object comparison with a multitude of
other spectroscopic samples in the same field shows that our DEIMOS sample is
among the best in terms of fraction of spectroscopic failures and relative
redshift accuracy. We have determined the fraction of spectroscopic blends to
about 0.8% in our sample. This is likely a lower limit and at any rate well
below the most pessimistic expectations. Interestingly, we find evidence for
strong lensing of Ly-alpha background emitters within the slits of 12 of our
target galaxies, increasing their apparent density by about a factor of 4.Comment: 28 pages, 11 figures and 5 tables. The full catalogue table is
available on http://cosmos.astro.caltech.edu. Accepted for publication in the
Astrophysical Journa
- …