1,939 research outputs found
Two-dimensional Transport Induced Linear Magneto-Resistance in Topological Insulator BiSe Nanoribbons
We report the study of a novel linear magneto-resistance (MR) under
perpendicular magnetic fields in Bi2Se3 nanoribbons. Through angular dependence
magneto-transport experiments, we show that this linear MR is purely due to
two-dimensional (2D) transport, in agreement with the recently discovered
linear MR from 2D topological surface state in bulk Bi2Te3, and the linear MR
of other gapless semiconductors and graphene. We further show that the linear
MR of Bi2Se3 nanoribbons persists to room temperature, underscoring the
potential of exploiting topological insulator nanomaterials for room
temperature magneto-electronic applications.Comment: ACS Nano, in pres
Search for psi(3770)\ra\rho\pi at the BESII detector at the Beijing Electron-Positron Collider
Non- decay \psppto \rhopi is searched for using a data sample of
taken at the center-of-mass energy of 3.773 GeV by the
BESII detector at the BEPC. No \rhopi signal is observed, and the upper limit
of the cross section is measured to be \sigma(\EETO \rhopi)<6.0 pb at 90% C.
L. Considering the interference between the continuum amplitude and the \pspp
resonance amplitude, the branching fraction of \pspp decays to is
determined to be \BR(\pspp\ra\rho\pi)\in(6.0\times10^{-6}, 2.4\times10^{-3})
at 90% C. L. This is in agreement with the prediction of the - and -wave
mixing scheme of the charmonium states for solving the ``\rhopi puzzle''
between \jpsi and \psp decays.Comment: 15 pages, 5 figure
Measurement of the branching fractions of psi(2S) -> 3(pi+pi-) and J/psi -> 2(pi+pi-)
Using data samples collected at sqrt(s) = 3.686GeV and 3.650GeV by the BESII
detector at the BEPC, the branching fraction of psi(2S) -> 3(pi+pi-) is
measured to be [4.83 +- 0.38(stat) +- 0.69(syst)] x 10^-4, and the relative
branching fraction of J/psi -> 2(pi+pi-) to that of J/psi -> mu+mu- is measured
to be [5.86 +- 0.19(stat) +- 0.39(syst)]% via psi(2S) -> (pi+pi-)J/psi, J/psi
-> 2(pi+pi-). The electromagnetic form factor of 3(pi+pi-) is determined to be
0.21 +- 0.02 and 0.20 +- 0.01 at sqrt(s) = 3.686GeV and 3.650GeV, respectively.Comment: 17pages, 7 figures, submitted to Phys. Rev.
Partial Wave Analysis of
A partial wave analysis of in
decay is presented using a sample of 14 million
events accumulated by the BES II detector. The data are fitted to
the sum of relativistic covariant tensor amplitudes for intermediate resonant
decay modes. From the fit, significant contributions to decays from
the channels , , ,
, , , and are found. Flavor-SU(3)-violating
asymmetry is observed. Values obtained for the masses and
widths of the resonances , , , and
are presented.Comment: 16 pages, 9 figures, and 4 table
Measurement of the cross section for e^+e^- -> ppbar at center-of-mass energies from 2.0 to 3.07 GeV
Cross sections for e^+e^- -> ppbar have been measured at 10 center-of-mass
energies from 2.0 to 3.07 GeV by the BESII experiment at the BEPC, and proton
electromagnetic form factors in the time-like region have been determined.Comment: 6 pages, 3 figure
Measurement of \psip Radiative Decays
Using 14 million psi(2S) events accumulated at the BESII detector, we report
first measurements of branching fractions or upper limits for psi(2S) decays
into gamma ppbar, gamma 2(pi^+pi^-), gamma K_s K^-pi^++c.c., gamma K^+ K^-
pi^+pi^-, gamma K^{*0} K^- pi^+ +c.c., gamma K^{*0}\bar K^{*0}, gamma pi^+pi^-
p pbar, gamma 2(K^+K^-), gamma 3(pi^+pi^-), and gamma 2(pi^+pi^-)K^+K^- with
the invariant mass of hadrons below 2.9GeV/c^2. We also report branching
fractions of psi(2S) decays into 2(pi^+pi^-) pi^0, omega pi^+pi^-, omega
f_2(1270), b_1^\pm pi^\mp, and pi^0 2(pi^+pi^-) K^+K^-.Comment: 5 pages, 4 figure
Measurements of the continuum and values in annihilation in the energy region between 3.650 and 3.872 GeV
We report measurents of the continuum near the center-of-mass
energy of 3.70 GeV, the and the values in annihilation at 68 energy points in the energy
region between 3.650 and 3.872 GeV with the BES-II detector at the BEPC
Collodier. We obtain the for the continuum light hadron
(containing u, d and s quarks) production near the threshold to be
.Comment: 5 pages, 3 figure
A Unified Approach to the Classical Statistical Analysis of Small Signals
We give a classical confidence belt construction which unifies the treatment
of upper confidence limits for null results and two-sided confidence intervals
for non-null results. The unified treatment solves a problem (apparently not
previously recognized) that the choice of upper limit or two-sided intervals
leads to intervals which are not confidence intervals if the choice is based on
the data. We apply the construction to two related problems which have recently
been a battle-ground between classical and Bayesian statistics: Poisson
processes with background, and Gaussian errors with a bounded physical region.
In contrast with the usual classical construction for upper limits, our
construction avoids unphysical confidence intervals. In contrast with some
popular Bayesian intervals, our intervals eliminate conservatism (frequentist
coverage greater than the stated confidence) in the Gaussian case and reduce it
to a level dictated by discreteness in the Poisson case. We generalize the
method in order to apply it to analysis of experiments searching for neutrino
oscillations. We show that this technique both gives correct coverage and is
powerful, while other classical techniques that have been used by neutrino
oscillation search experiments fail one or both of these criteria.Comment: 40 pages, 15 figures. Changes 15-Dec-99 to agree more closely with
published version. A few small changes, plus the two substantive changes we
made in proof back in 1998: 1) The definition of "sensitivity" in Sec. V(C).
It was inconsistent with our actual definition in Sec. VI. 2) "Note added in
proof" at end of the Conclusio
Measurements of and decays into and
Using 58 million and 14 million events collected by the
BESII detector at the BEPC, branching fractions or upper limits for the decays
and and are measured. For the isospin violating decays, the upper
limits are determined to be and at the 90% confidence level. The isospin
conserving process is observed for the
first time, and its branching fraction is measured to be , where the
first error is statistical and the second one is systematic. No signal is observed in decays, and is set at the 90%
confidence level. Branching fractions of decays into and are also reported, and the sum
of these branching fractions is determined to be .Comment: 7 pages, 10 figures. Phys.Rev.D comments considere
- …