95 research outputs found
Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods
This article is devoted to computing the lower and upper bounds of the
Laplace eigenvalue problem. By using the special nonconforming finite elements,
i.e., enriched Crouzeix-Raviart element and extension , we get
the lower bound of the eigenvalue. Additionally, we also use conforming finite
elements to do the postprocessing to get the upper bound of the eigenvalue. The
postprocessing method need only to solve the corresponding source problems and
a small eigenvalue problem if higher order postprocessing method is
implemented. Thus, we can obtain the lower and upper bounds of the eigenvalues
simultaneously by solving eigenvalue problem only once. Some numerical results
are also presented to validate our theoretical analysis.Comment: 19 pages, 4 figure
Temperature dependence of ESR intensity for the nanoscale molecular magnet V15
The electron spin resonance (ESR) of nanoscale molecular magnet is studied. Since the Hamiltonian of has a large
Hilbert space and numerical calculations of the ESR signal evaluating the Kubo
formula with exact diagonalization method is difficult, we implement the
formula with the help of the random vector technique and the Chebyshev
polynominal expansion, which we name the double Chebyshev expansion method. We
calculate the temperature dependence of the ESR intensity of and
compare it with the data obtained in experiment. As another complementary
approach, we also implement the Kubo formula with the subspace iteration method
taking only important low-lying states into account. We study the ESR
absorption curve below by means of both methods. We find that side
peaks appear due to the Dzyaloshinsky-Moriya interaction and these peaks grows
as temperature decreases.Comment: 9 pages, 4 figures. To appear in J. Phys. Soc. Jpn. Supp
Asymptotic Expansions for Stationary Distributions of Perturbed Semi-Markov Processes
New algorithms for computing of asymptotic expansions for stationary
distributions of nonlinearly perturbed semi-Markov processes are presented. The
algorithms are based on special techniques of sequential phase space reduction,
which can be applied to processes with asymptotically coupled and uncoupled
finite phase spaces.Comment: 83 page
Sequence Defined Disulfide-Linked Shuttle for Strongly Enhanced Intracellular Protein Delivery
Intracellular protein transduction technology is opening the door for a promising alternative to gene therapy. Techniques have to address all critical steps, like efficient cell uptake, endolysosomal escape, low toxicity, while maintaining full functional activity of the delivered protein. Here, we present the use of a chemically precise, structure defined three-arm cationic oligomer carrier molecule for protein delivery. This carrier of exact and low molecular weight combines good cellular uptake with efficient endosomal escape and low toxicity. The protein cargo is covalently attached by a bioreversible disulfide linkage. Murine 3T3 fibroblasts could be transduced very efficiently with cargo nlsEGFP, which was tagged with a nuclear localization signal. We could show subcellular delivery of the nlsEGFP to the nucleus, confirming cytosolic delivery and expected subsequent subcellular trafficking. Transfection efficiency was concentration-dependent in a directly linear mode and 20-fold higher in comparison with HIV-TAT-nlsEGFP containing a functional TAT transduction domain. Furthermore, β-galactosidase as a model enzyme cargo, modified with the carrier oligomer, was transduced into neuroblastoma cells in enzymatically active form
On the characterization of the heterogeneous mechanical response of human brain tissue
The mechanical characterization of brain tissue is a complex task that scientists have tried to accomplish for over 50Â years. The results in the literature often differ by orders of magnitude because of the lack of a standard testing protocol. Different testing conditions (including humidity, temperature, strain rate), the methodology adopted, and the variety of the species analysed are all potential sources of discrepancies in the measurements. In this work, we present a rigorous experimental investigation on the mechanical properties of human brain, covering both grey and white matter. The influence of testing conditions is also shown and thoroughly discussed. The material characterization performed is finally adopted to provide inputs to a mathematical formulation suitable for numerical simulations of brain deformation during surgical procedures.</p
Nirvana by Numbers: Comparison between MFA and PLS Approaches on an Example
T. Aluja, J. Casanovas, V. Esposito Vinzi, A. Morineau, M. Tenenhaus (eds.)-
SPAD Groupe Test&G
- …