24,389 research outputs found

    Structure of polydisperse inverse ferrofluids: Theory and computer simulation

    Full text link
    By using theoretical analysis and molecular dynamics simulations, we investigate the structure of colloidal crystals formed by nonmagnetic microparticles (or magnetic holes) suspended in ferrofluids (called inverse ferrofluids), by taking into account the effect of polydispersity in size of the nonmagnetic microparticles. Such polydispersity often exists in real situations. We obtain an analytical expression for the interaction energy of monodisperse, bidisperse, and polydisperse inverse ferrofluids. Body-centered tetragonal (bct) lattices are shown to possess the lowest energy when compared with other sorts of lattices and thus serve as the ground state of the systems. Also, the effect of microparticle size distributions (namely, polydispersity in size) plays an important role in the formation of various kinds of structural configurations. Thus, it seems possible to fabricate colloidal crystals by choosing appropriate polydispersity in size.Comment: 22 pages, 8 figure

    Ultrasensitive mechanical detection of magnetic moment using a commercial disk drive write head

    Full text link
    Sensitive detection of weak magnetic moments is an essential capability in many areas of nanoscale science and technology, including nanomagnetism, quantum readout of spins, and nanoscale magnetic resonance imaging. Here, we show that the write head of a commercial hard drive may enable significant advances in nanoscale spin detection. By approaching a sharp diamond tip to within 5 nm from the pole and measuring the induced diamagnetic moment with a nanomechanical force transducer, we demonstrate a spin sensitivity of 0.032 Bohr magnetons per root Hz, equivalent to 21 proton magnetic moments. The high sensitivity is enabled in part by the pole's strong magnetic gradient of up to 28 million Tesla per meter and in part by the absence of non-contact friction due to the extremely flat writer surface. In addition, we demonstrate quantitative imaging of the pole field with about 10 nm spatial resolution. We foresee diverse applications for write heads in experimental condensed matter physics, especially in spintronics, ultrafast spin manipulation, and mesoscopic physics.Comment: 21 pages, 6 figure

    The Abel-Zeilberger Algorithm

    Full text link
    We use both Abel's lemma on summation by parts and Zeilberger's algorithm to find recurrence relations for definite summations. The role of Abel's lemma can be extended to the case of linear difference operators with polynomial coefficients. This approach can be used to verify and discover identities involving harmonic numbers and derangement numbers. As examples, we use the Abel-Zeilberger algorithm to prove the Paule-Schneider identities, the Apery-Schmidt-Strehl identity, Calkin's identity and some identities involving Fibonacci numbers.Comment: 18 page

    Confocal microscopic image sequence compression using vector quantization and 3D pyramids

    Get PDF
    The 3D pyramid compressor project at the University of Glasgow has developed a compressor for images obtained from CLSM device. The proposed method using a combination of image pyramid coder and vector quantization techniques has good performance at compressing confocal volume image data. An experiment was conducted on several kinds of CLSM data using the presented compressor compared to other well-known volume data compressors, such as MPEG-1. The results showed that the 3D pyramid compressor gave higher subjective and objective image quality of reconstructed images at the same compression ratio and presented more acceptable results when applying image processing filters on reconstructed images

    Geometric vs. Dynamical Gates in Quantum Computing Implementations Using Zeeman and Heisenberg Hamiltonians

    Full text link
    Quantum computing in terms of geometric phases, i.e. Berry or Aharonov-Anandan phases, is fault-tolerant to a certain degree. We examine its implementation based on Zeeman coupling with a rotating field and isotropic Heisenberg interaction, which describe NMR and can also be realized in quantum dots and cold atoms. Using a novel physical representation of the qubit basis states, we construct π/8\pi/8 and Hadamard gates based on Berry and Aharonov-Anandan phases. For two interacting qubits in a rotating field, we find that it is always impossible to construct a two-qubit gate based on Berry phases, or based on Aharonov-Anandan phases when the gyromagnetic ratios of the two qubits are equal. In implementing a universal set of quantum gates, one may combine geometric π/8\pi/8 and Hadamard gates and dynamical SWAP\sqrt{\rm SWAP} gate.Comment: published version, 5 page

    Nanoladder cantilevers made from diamond and silicon

    Full text link
    We present a "nanoladder" geometry that minimizes the mechanical dissipation of ultrasensitive cantilevers. A nanoladder cantilever consists of a lithographically patterned scaffold of rails and rungs with feature size ∼\sim 100 nm. Compared to a rectangular beam of the same dimensions, the mass and spring constant of a nanoladder are each reduced by roughly two orders of magnitude. We demonstrate a low force noise of 158(+62)(−42) 158 (+62)(-42)\,zN and 190(+42)(−33) 190 (+42)(-33)\,zN in a one-Hz bandwidth for devices made from silicon and diamond, respectively, measured at temperatures between 100--150 mK. As opposed to bottom-up mechanical resonators like nanowires or nanotubes, nanoladder cantilevers can be batch-fabricated using standard lithography, which is a critical factor for applications in scanning force microscopy
    • …
    corecore