20,842 research outputs found

    Understanding players' map exploration styles

    Full text link
    Copyright 2016 ACM. Exploration is an essential part of play in modern video games. It refers to the discovery-based activities, in which players explore mechanisms, as well as spatiality of virtual world. Exploration games and games with exploration plots are booming in gamer communities. In this paper, we focus on spatial exploration, which is central to play in role-playing games (RPG) and real time strategy (RTS) games. We investigate the game-playing behaviors of human players in exploration games, so as to discover behavior patterns and understand gamer styles. The intention is to contribute to the design and development of believable agents. We conducted an experiment where 25 participants played three types of exploration games. In-game data, think-aloud data, questionnaire responses and post-game interview data were collected to gain a deeper understanding of exploration preferences. We used thematic analysis to analyze data and mapped out four game exploration archetypes: Wanderers, Seers, Pathers and Targeters. An analysis from the four highlight aspects: strategy, reasoning, conception and hesitation, is conducted to investigate the behavioral traits of these four archetypes

    A scouting strategy for real-time strategy games

    Full text link
    © 2014 ACM. Real-time strategy (RTS) is a sub-genre of strategy video games. RTS games are more realistic with dynamic and time-constraint game playing, by abandoning the turn-based rule of its ancestors. Playing with and against computer-controlled players is a pervasive phenomenon in RTS games, due to the convenience and the preference of groups of players. Hence, better game-playing agents are able to enhance game-playing experience by acting as smart opponents or collaborators. One-way of improving game-playing agents' performance, in terms of their economic-expansion and tactical battlefield-arrangement aspects, is to understand the game environment. Traditional commercial RTS game-playing agents address this issue by directly accessing game maps and extracting strategic features. Since human players are unable to access the same information, this is a form of "cheating AI", which has been known to negatively affect player experiences. Thus, we develop a scouting mechanism for RTS game-playing agents, in order to enable game units to explore game environments automatically in a realistic fashion. Our research is grounded in prior robotic exploration work by which we present a hierarchical multi-criterion decision-making (MCDM) strategy to address the incomplete information problem in RTS settings

    Orientation and strain modulated electronic structures in puckered arsenene nanoribbons

    Full text link
    Orthorhombic arsenene was recently predicted as an indirect bandgap semiconductor. Here, we demonstrate that nanostructuring arsenene into nanoribbons can successfully transform the bandgap to be direct. It is found that direct bandgaps hold for narrow armchair but wide zigzag nanoribbons, which is dominated by the competition between the in-plane and out-of-plane bondings. Moreover, straining the nanoribbons also induces a direct bandgap and simultaneously modulates effectively the transport property. The gap energy is largely enhanced by applying tensile strains to the armchair structures. In the zigzag ones, a tensile strain makes the effective mass of holes much higher while a compressive strain cause it much lower than that of electrons. Our results are crutial to understand and engineer the electronic properties of two dimensional materials beyond the planar ones like graphene

    Extended calculations of energy levels, radiative properties, AJA_{J}, BJB_{J} hyperfine interaction constants, and Land\'e gJg_{J}-factors for nitrogen-like \mbox{Ge XXVI}

    Get PDF
    Employing two state-of-the-art methods, multiconfiguration Dirac--Hartree--Fock and second-order many-body perturbation theory, highly accurate calculations are performed for the lowest 272 fine-structure levels arising from the 2s22p32s^{2} 2p^{3}, 2s2p42s 2p^{4}, 2p52p^{5}, 2s22p23l2s^{2} 2p^{2} 3l~(l=s,p,dl=s,p,d), 2s2p33l2s 2p^{3}3l (l=s,p,dl=s,p,d), and 2p43l2p^{4} 3l (l=s,p,dl=s,p,d) configurations in nitrogen-like Ge XXVI. Complete and consistent atomic data, including excitation energies, lifetimes, wavelengths, hyperfine structures, Land\'e gJg_{J}-factors, and E1, E2, M1, M2 line strengths, oscillator strengths, and transition rates among these 272 levels are provided. Comparisons are made between the present two data sets, as well as with other available experimental and theoretical values. The present data are accurate enough for identification and deblending of emission lines involving the n=3n=3 levels, and are also useful for modeling and diagnosing fusion plasmas

    Dynamics of Neural Networks with Continuous Attractors

    Full text link
    We investigate the dynamics of continuous attractor neural networks (CANNs). Due to the translational invariance of their neuronal interactions, CANNs can hold a continuous family of stationary states. We systematically explore how their neutral stability facilitates the tracking performance of a CANN, which is believed to have wide applications in brain functions. We develop a perturbative approach that utilizes the dominant movement of the network stationary states in the state space. We quantify the distortions of the bump shape during tracking, and study their effects on the tracking performance. Results are obtained on the maximum speed for a moving stimulus to be trackable, and the reaction time to catch up an abrupt change in stimulus.Comment: 6 pages, 7 figures with 4 caption

    Scaling of the magnetic entropy and magnetization in YbRh_2(Si_{0.95}Ge_{0.05})_2

    Full text link
    The magnetic entropy of YbRh_2(Si_{0.95}Ge_{0.05})_2 is derived from low-temperature (T18T\geq 18 mK) specific heat measurements. Upon field-tuning the system to its antiferromagnetic quantum critical point unique temperature over magnetic field scaling is observed indicating the disintegration of heavy quasiparticles. The field dependence of the entropy equals the temperature dependence of the dc-magnetization as expected from the Maxwell relation. This proves that the quantum-critical fluctuations affect the thermal and magnetic properties in a consistent way.Comment: 6 pages, 2 figures, manuscript submitted to SCES2004 conferenc
    corecore