32,134 research outputs found

    Generalized Second-Order Thomas-Fermi Method for Superfluid Fermi Systems

    Full text link
    Using the â„Ź\hbar-expansion of the Green's function of the Hartree-Fock-Bogoliubov equation, we extend the second-order Thomas-Fermi approximation to generalized superfluid Fermi systems by including the density-dependent effective mass and the spin-orbit potential. We first implement and examine the full correction terms over different energy intervals of the quasiparticle spectra in calculations of finite nuclei. Final applications of this generalized Thomas-Fermi method are intended for various inhomogeneous superfluid Fermi systems.Comment: 8 pages, 10 figures, PR

    Verifying Policy Enforcers

    Get PDF
    Policy enforcers are sophisticated runtime components that can prevent failures by enforcing the correct behavior of the software. While a single enforcer can be easily designed focusing only on the behavior of the application that must be monitored, the effect of multiple enforcers that enforce different policies might be hard to predict. So far, mechanisms to resolve interferences between enforcers have been based on priority mechanisms and heuristics. Although these methods provide a mechanism to take decisions when multiple enforcers try to affect the execution at a same time, they do not guarantee the lack of interference on the global behavior of the system. In this paper we present a verification strategy that can be exploited to discover interferences between sets of enforcers and thus safely identify a-priori the enforcers that can co-exist at run-time. In our evaluation, we experimented our verification method with several policy enforcers for Android and discovered some incompatibilities.Comment: Oliviero Riganelli, Daniela Micucci, Leonardo Mariani, and Yli\`es Falcone. Verifying Policy Enforcers. Proceedings of 17th International Conference on Runtime Verification (RV), 2017. (to appear

    Refined topological amplitudes in N=1 flux compactification

    Full text link
    We study the implication of refined topological string amplitudes in the supersymmetric N=1 flux compactification. They generate higher derivative couplings among the vector multiplets and graviphoton with generically non-holomorphic moduli dependence. For a particular term, we can compute them by assuming the geometric engineering. We claim that the Dijkgraaf-Vafa large N matrix model with the beta-ensemble measure directly computes the higher derivative corrections to the supersymmetric effective action of the supersymmetric N=1$ gauge theory.Comment: 16 pages, v2: reference adde

    Azimuthal distributions of radial momentum and velocity in relativistic heavy ion collisions

    Full text link
    Azimuthal distributions of radial (transverse) momentum, mean radial momentum, and mean radial velocity of final state particles are suggested for relativistic heavy ion collisions. Using transport model AMPT with string melting, these distributions for Au + Au collisions at 200 GeV are presented and studied. It is demonstrated that the distribution of total radial momentum is more sensitive to the anisotropic expansion, as the anisotropies of final state particles and their associated transverse momentums are both counted in the measure. The mean radial velocity distribution is compared with the radial {\deg}ow velocity. The thermal motion contributes an isotropic constant to mean radial velocity

    A Prediction of the B*_c mass in full lattice QCD

    Get PDF
    By using the Highly Improved Staggered Quark formalism to handle charm, strange and light valence quarks in full lattice QCD, and NRQCD to handle bottom valence quarks we are able to determine accurately ratios of the B meson vector-pseudoscalar mass splittings, in particular, (m(B*_c)-m(B_c))/(m(B*_s)-m(B_s)). We find this ratio to be 1.15(15), showing the `light' quark mass dependence of this splitting to be very small. Hence we predict m(B_c*) = 6.330(7)(2)(6) GeV where the first two errors are from the lattice calculation and the third from existing experiment. This is the most accurate prediction of a gold-plated hadron mass from lattice QCD to date.Comment: 4 pages, 2 figure

    Large-scale Laboratory Observations of Turbulence and Shear Stresses in the Surf Zone

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchive
    • …
    corecore