60,783 research outputs found
Optical properties of Si/Si0.87Ge0.13 multiple quantum well wires
Nanometer-scale wires cut into a Si/Si0.87Ge0.13 multiple quantum well structure were fabricated and characterized by using photoluminescence and photoreflectance at temperatures between 4 and 20 K. It was found that, in addition to a low-energy broadband emission at around 0.8 eV and other features normally observable in photoluminescence measurements, fabrication process induced strain relaxation and enhanced electron-hole droplets emission together with a new feature at 1.131 eV at 4 K were observed. The latter was further identified as a transition related to impurities located at the Si/Si0.87Ge0.13 heterointerfaces
NASA ground terminal communication equipment automated fault isolation expert systems
The prototype expert systems are described that diagnose the Distribution and Switching System I and II (DSS1 and DSS2), Statistical Multiplexers (SM), and Multiplexer and Demultiplexer systems (MDM) at the NASA Ground Terminal (NGT). A system level fault isolation expert system monitors the activities of a selected data stream, verifies that the fault exists in the NGT and identifies the faulty equipment. Equipment level fault isolation expert systems are invoked to isolate the fault to a Line Replaceable Unit (LRU) level. Input and sometimes output data stream activities for the equipment are available. The system level fault isolation expert system compares the equipment input and output status for a data stream and performs loopback tests (if necessary) to isolate the faulty equipment. The equipment level fault isolation system utilizes the process of elimination and/or the maintenance personnel's fault isolation experience stored in its knowledge base. The DSS1, DSS2 and SM fault isolation systems, using the knowledge of the current equipment configuration and the equipment circuitry issues a set of test connections according to the predefined rules. The faulty component or board can be identified by the expert system by analyzing the test results. The MDM fault isolation system correlates the failure symptoms with the faulty component based on maintenance personnel experience. The faulty component can be determined by knowing the failure symptoms. The DSS1, DSS2, SM, and MDM equipment simulators are implemented in PASCAL. The DSS1 fault isolation expert system was converted to C language from VP-Expert and integrated into the NGT automation software for offline switch diagnoses. Potentially, the NGT fault isolation algorithms can be used for the DSS1, SM, amd MDM located at Goddard Space Flight Center (GSFC)
Diving Deep into Sentiment: Understanding Fine-tuned CNNs for Visual Sentiment Prediction
Visual media are powerful means of expressing emotions and sentiments. The
constant generation of new content in social networks highlights the need of
automated visual sentiment analysis tools. While Convolutional Neural Networks
(CNNs) have established a new state-of-the-art in several vision problems,
their application to the task of sentiment analysis is mostly unexplored and
there are few studies regarding how to design CNNs for this purpose. In this
work, we study the suitability of fine-tuning a CNN for visual sentiment
prediction as well as explore performance boosting techniques within this deep
learning setting. Finally, we provide a deep-dive analysis into a benchmark,
state-of-the-art network architecture to gain insight about how to design
patterns for CNNs on the task of visual sentiment prediction.Comment: Preprint of the paper accepted at the 1st Workshop on Affect and
Sentiment in Multimedia (ASM), in ACM MultiMedia 2015. Brisbane, Australi
DC Spin Current Generation in a Rashba-type Quantum Channel
We propose and demonstrate theoretically that resonant inelastic scattering
(RIS) can play an important role in dc spin current generation. The RIS makes
it possible to generate dc spin current via a simple gate configuration: a
single finger-gate that locates atop and orients transversely to a quantum
channel in the presence of Rashba spin-orbit interaction. The ac biased
finger-gate gives rise to a time-variation in the Rashba coupling parameter,
which causes spin-resolved RIS, and subsequently contributes to the dc spin
current. The spin current depends on both the static and the dynamic parts in
the Rashba coupling parameter, and , respectively, and is
proportional to . The proposed gate configuration has the
added advantage that no dc charge current is generated. Our study also shows
that the spin current generation can be enhanced significantly in a double
finger-gate configuration.Comment: 4 pages,4 figure
- …