40 research outputs found
Relative gut lengths of coral reef butterflyfishes (Pisces: Chaetodontidae)
Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Coral Reefs 30 (2011): 1005-1010, doi:10.1007/s00338-011-0791-x.Variation in gut length of closely related animals is known to generally be a good predictor of dietary habits. We examined gut length in 28 species of butterflyfishes (Chaetodontidae), which encompass a wide range of dietary types (planktivores, omnivores, corallivores). We found general dietary patterns to be a good predictor of relative gut length, although we found high variation among groups and covariance with body size. The longest gut lengths are found in species that exclusively feed on the living tissue of corals, while the shortest gut length is found in a planktivorous species. Although we tried to control for phylogeny, corallivory has arisen multiple times in this family, confounding our analyses. The butterflyfishes, a speciose family with a wide range of dietary habits, may nonetheless provide an ideal system for future work studying gut physiology associated with specialisation and foraging behaviours.This project was funded in part by a National Science Foundation (USA) Graduate Research Fellowship to MLB.2012-06-1
Fishery-Independent Data Reveal Negative Effect of Human Population Density on Caribbean Predatory Fish Communities
BACKGROUND: Understanding the current status of predatory fish communities, and the effects fishing has on them, is vitally important information for management. However, data are often insufficient at region-wide scales to assess the effects of extraction in coral reef ecosystems of developing nations. METHODOLOGY/PRINCIPAL FINDINGS: Here, I overcome this difficulty by using a publicly accessible, fisheries-independent database to provide a broad scale, comprehensive analysis of human impacts on predatory reef fish communities across the greater Caribbean region. Specifically, this study analyzed presence and diversity of predatory reef fishes over a gradient of human population density. Across the region, as human population density increases, presence of large-bodied fishes declines, and fish communities become dominated by a few smaller-bodied species. CONCLUSIONS/SIGNIFICANCE: Complete disappearance of several large-bodied fishes indicates ecological and local extinctions have occurred in some densely populated areas. These findings fill a fundamentally important gap in our knowledge of the ecosystem effects of artisanal fisheries in developing nations, and provide support for multiple approaches to data collection where they are commonly unavailable
Habitat associations of juvenile versus adult butterflyfishes
Author Posting. © Springer-Verlag, 2008. This is the author's version of the work. It is posted here by permission of Springer-Verlag for personal use, not for redistribution. The definitive version was published in Coral Reefs 27 (2008): 541-551, doi:10.1007/s00338-008-0357-8.Many coral reef fishes exhibit distinct ontogenetic shifts in habitat use while
some species settle directly in adult habitats, but there is not any general explanation to
account for these differences in settlement strategies among coral reef fishes. This study
compared distribution patterns and habitat associations of juvenile (young of the year)
butterflyfishes to those of adult conspecifics. Three species, Chaetodon auriga,
Chaetodon melannotus, and Chaetodon vagabundus, all of which have limited reliance
on coral for food, exhibited marked differences in habitat association of juvenile versus
adult individuals. Juveniles of these species were consistently found in shallow-water
habitats, whereas adult conspecifics were widely distributed throughout a range of
habitats. Juveniles of seven other species (Chaetodon aureofasciatus, Chaetodon
baronessa, Chaetodon citrinellus, Chaetodon lunulatus, Chaetodon plebeius,
Chaetodon rainfordi, and Chaetodon trifascialis), all of which feed predominantly on
live corals, settled directly into habitat occupied by adult conspecifics. Butterflyfishes
with strong reliance on corals appear to be constrained to settle in habitats that provide
access to essential prey resources, precluding their use of distinct juvenile habitats.
More generalist butterflyfishes, however, appear to utilise distinct juvenile habitats and
exhibit marked differences in the distribution of juveniles versus adults.This research was funded by a JCU Program Grant to MSP, while MLB was
supported by an NSF (USA) Graduate Research Fellowship
Marine Biodiversity in the Caribbean: Regional Estimates and Distribution Patterns
This paper provides an analysis of the distribution patterns of marine biodiversity and summarizes the major activities of the Census of Marine Life program in the Caribbean region. The coastal Caribbean region is a large marine ecosystem (LME) characterized by coral reefs, mangroves, and seagrasses, but including other environments, such as sandy beaches and rocky shores. These tropical ecosystems incorporate a high diversity of associated flora and fauna, and the nations that border the Caribbean collectively encompass a major global marine biodiversity hot spot. We analyze the state of knowledge of marine biodiversity based on the geographic distribution of georeferenced species records and regional taxonomic lists. A total of 12,046 marine species are reported in this paper for the Caribbean region. These include representatives from 31 animal phyla, two plant phyla, one group of Chromista, and three groups of Protoctista. Sampling effort has been greatest in shallow, nearshore waters, where there is relatively good coverage of species records; offshore and deep environments have been less studied. Additionally, we found that the currently accepted classification of marine ecoregions of the Caribbean did not apply for the benthic distributions of five relatively well known taxonomic groups. Coastal species richness tends to concentrate along the Antillean arc (Cuba to the southernmost Antilles) and the northern coast of South America (Venezuela – Colombia), while no pattern can be observed in the deep sea with the available data. Several factors make it impossible to determine the extent to which these distribution patterns accurately reflect the true situation for marine biodiversity in general: (1) highly localized concentrations of collecting effort and a lack of collecting in many areas and ecosystems, (2) high variability among collecting methods, (3) limited taxonomic expertise for many groups, and (4) differing levels of activity in the study of different taxa