3 research outputs found

    Smooth muscle hypercontractility in airway hyperresponsiveness: innate, acquired, or nonexistent?

    Full text link
    From introduction: Asthma symptoms are triggered or exacerbated by a range of environmental factors, such as allergens, viruses, fungi, exercise, aspirin, pollutants, and occupational irritants and sensitizers. While traditionally considering an intrinsic disease, in more recent years asthma has been viewed by many as a genetically associated environmental lung disorder with a heterogeneous pathogenesis. With the exception of the severe cases, the diagnostic signature of asthma is the reversibility of airway obstruction by agents that relax airway smooth muscle (ASM), which attests to the importance of this tissue in the pathobiology of the airflow obstruction

    Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis

    Full text link
    Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality worldwide1. We performed a genetic association in 15,256 cases and 47,936 controls, with replication of select top results (P < 5x10-6) in 9,498 cases and 9,748 controls. In the combined meta-analysis, we identified 22 loci at genome-wide significance, including 13 new associations with COPD. Nine of these 13 loci have been associated with lung function in general population samples2-7; however, 4 (EEFSEC, DSP, MTCL1, and SFTPD) are novel. We noted 2 loci shared with pulmonary fibrosis8,9 (FAM13A and DSP) but with opposite risk alleles for COPD. None of our loci overlapped with genome-wide associations for asthma; however, one locus has been implicated in the joint susceptibility to asthma and obesity10. We also identified genetic correlation between COPD and asthma. Our findings highlight novel loci, demonstrate the importance of specific lung function loci to COPD, and identify potential regions of genetic overlap between COPD and other respiratory diseases

    Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets

    Full text link
    Chronic Obstructive Pulmonary Disease (COPD) is characterised by reduced lung function and is the third leading cause of death globally. Through genome-wide association discovery in 48,943 individuals, selected from extremes of the lung function distribution in UK Biobank, and follow-up in 95,375 individuals, we increased the yield of independent signals for lung function from 54 to 97. A genetic risk score was associated with COPD susceptibility (odds ratios per standard deviation of the risk score (~6 alleles) (95% confidence interval) 1.24 (1.20-1.27), P=5.05x10^-49) and we observed a 3.7 fold difference in COPD risk between highest and lowest genetic risk score deciles in UK Biobank. The 97 signals show enrichment in development, elastic fibres and epigenetic regulation pathways. We highlight targets for drugs and compounds in development for COPD and asthma (genes in the inositol phosphate metabolism pathway and CHRM3) and describe targets for potential drug repositioning from other clinical indications
    corecore