19,575 research outputs found

    The effect of nearest neighbor spin-singlet correlations in conventional graphene SNS Josephson junctions

    Full text link
    Using the self-consistent tight-binding Bogoliubov-de Gennes formalism we have studied the effect of nearest neighbor spin-singlet bond (SB) correlations on Josephson coupling and proximity effect in graphene SNS Josephson junctions with conventional s-wave superconducting contacts. Despite the s-wave superconducting state in the contacts, the SB pairing state inside the junction has d-wave symmetry and clean, sharp interface junctions resemble a 'bulk-meets-bulk' situation with very little interaction between the two different superconducting states. In fact, due to a finite-size suppression of the superconducting state, a stronger SB coupling constant than in the bulk is needed in order to achieve SB pairing in a junction. For both short clean zigzag and armchair junctions a d-wave state that has a zero Josephson coupling to the s-wave state is chosen and therefore the Josephson current decreases when a SB pairing state develops in these junctions. In more realistic junctions, with smoother doping profiles and atomic scale disorder at the interfaces, it is possible to achieve some coupling between the contact s-wave state and the SB d-wave states. In addition, by breaking the appropriate lattice symmetry at the interface in order to induce another d-wave state, a non-zero Josephson coupling can be achieved which leads to a substantial increase in the Josephson current. We also report on the LDOS of the junctions and on a lack of zero energy states at interfaces despite the unconventional order parameters, which we attribute to the near degeneracy of the two d-wave solutions and their mixing at a general interface.Comment: 13 pages, 9 figures. Typos correcte

    The possibility of measuring intrinsic electronic correlations in graphene using a d-wave contact Josephson junction

    Full text link
    While not widely recognized, electronic correlations might play an important role in graphene. Indeed, Pauling's resonance valence bond (RVB) theory for the pp-bonded planar organic molecules, of which graphene is the infinite extension, already established the importance of the nearest neighbor spin-singlet bond (SB) state in these materials. However, despite the recent growth of interest in graphene, there is still no quantitative estimate of the effects of Coulomb repulsion in either undoped or doped graphene. Here we use a tight-binding Bogoliubov-de Gennes (TB BdG) formalism to show that in unconventional d-wave contact graphene Josephson junctions the intrinsic SB correlations are strongly enhanced. We show on a striking effect of the SB correlations in both proximity effect and Josephson current as well as establishing a 1/(T-T_c) functional dependence for the superconducting decay length. Here T_c is the superconducting transition temperature for the intrinsic SB correlations, which depends on both the effects of Coulomb repulsion and the doping level. We therefore propose that d-wave contact graphene Josephson junctions will provide a promising experimental system for the measurement of the effective strength of intrinsic SB correlations in graphene.Comment: 4 pages, 4 figure

    Impurity-induced dephasing of Andreev states

    Full text link
    A study is presented concerning the influence of flicker noise in the junction transparency on coherent transport in Andreev states. The amount of dephasing is estimated for a microwave-activated quantum interferometer. Possibilities of experimentally investigating the coupling between a superconducting quantum point contact and its electromagnetic environment are discussed.Comment: 8 pages, 4 figure

    Charmonium-Nucleon Dissociation Cross Sections in the Quark Model

    Full text link
    Charmonium dissociation cross sections due to flavor-exchange charmonium-baryon scattering are computed in the constituent quark model. We present results for inelastic J/ψNJ/\psi N and ηcN\eta_c N scattering amplitudes and cross sections into 46 final channels, including final states composed of various combinations of DD, D∗D^*, Σc\Sigma_c, and Λc\Lambda_c. These results are relevant to experimental searches for the deconfined phase of quark matter, and may be useful in identifying the contribution of initial ccˉc\bar c production to the open-charm final states observed at RHIC through the characteristic flavor ratios of certain channels. These results are also of interest to possible charmonium-nucleon bound states.Comment: 10 pages, 5 eps figures, revte

    Current themes in cement research

    No full text

    Structure, bonding and morphology of hydrothermally synthesised xonotlite

    No full text
    The authors have systematically investigated the role of synthesis conditions upon the structure and morphology of xonotlite. Starting with a mechanochemically prepared, semicrystalline phase with Ca/Si=1, the authors have prepared a series of xonotlite samples hydrothermally, at temperatures between 200 and 250 degrees C. Analysis in each case was by X-ray photoelectron spectroscopy, environmental scanning electron microscopy and X-ray diffraction. The authors’ use of a much lower water/solid ratio has indirectly confirmed the ‘through solution’ mechanism of xonotlite formation, where silicate dissolution is a key precursor of xonotlite formation. Concerning the role of temperature, too low a temperature (~200 degrees C) fails to yield xonotlite or leads to increased number of structural defects in the silicate chains of xonotlite and too high a temperature (>250 degrees C) leads to degradation of the xonotlite structure, through leaching of interchain calcium. Synthesis duration meanwhile leads to increased silicate polymerisation due to diminishing of the defects in the silicate chains and more perfect crystal morphologies

    Search for lepton flavor violation via the intense high-energy muon beam

    Full text link
    A deep inerastic scattering process \mutau is discussed to study lepton flavor violation between muons and tau leptons. In supersymmetric models, the Higgs boson mediated diagrams could be important for this reaction. We find that at a muon energy (EμE_{\mu}) higher than 50 GeV, the predicted cross section significantly increases due to the contribution from sea bb-quarks. The number of produced tau leptons can be O(104)\mathcal{O}(10^4) at EμE_{\mu}= 300 GeV from 102010^{20} muons, whereas O(102)\mathcal{O}(10^2) events are given at Eμ=50E_{\mu}= 50 GeV.Comment: Contribution to the 6th International Workshop on Neutrino Factories & Superbeams(NuFact04), Jul. 26-Aug. 1, 2004, Osaka Univerisity, Osaka, Japan, talk given by S.K., to appear in the Proceedings, 3 pages, 4 figure

    Loss of quantum coherence due to non-stationary glass fluctuations

    Full text link
    Low-temperature dynamics of insulating glasses is dominated by a macroscopic concentration of tunneling two-level systems (TTLS). The distribution of the switching/relaxation rates of TTLS is exponentially broad, which results in non-equilibrium state of the glass at arbitrarily long time-scales. Due to the electric dipolar nature, the switching TTLS generate fluctuating electromagnetic fields. We study the effect of the non-thermal slow fluctuators on the dephasing of a solid state qubit. We find that at low enough temperatures, non-stationary contribution can dominate the stationary (thermal) one, and discuss how this effect can be minimized.Comment: 4 page

    Non-Gaussian dephasing in flux qubits due to 1/f-noise

    Full text link
    Recent experiments by F. Yoshihara et al. [Phys. Rev. Lett. 97, 167001 (2006)] and by K. Kakuyanagi et al. (cond-mat/0609564) provided information on decoherence of the echo signal in Josephson-junction flux qubits at various bias conditions. These results were interpreted assuming a Gaussian model for the decoherence due to 1/f noise. Here we revisit this problem on the basis of the exactly solvable spin-fluctuator model reproducing detailed properties of the 1/f noise interacting with a qubit. We consider the time dependence of the echo signal and conclude that the results based on the Gaussian assumption need essential reconsideration.Comment: Improved fitting parameters, new figur

    Delegating Quantum Computation in the Quantum Random Oracle Model

    Full text link
    A delegation scheme allows a computationally weak client to use a server's resources to help it evaluate a complex circuit without leaking any information about the input (other than its length) to the server. In this paper, we consider delegation schemes for quantum circuits, where we try to minimize the quantum operations needed by the client. We construct a new scheme for delegating a large circuit family, which we call "C+P circuits". "C+P" circuits are the circuits composed of Toffoli gates and diagonal gates. Our scheme is non-interactive, requires very little quantum computation from the client (proportional to input length but independent of the circuit size), and can be proved secure in the quantum random oracle model, without relying on additional assumptions, such as the existence of fully homomorphic encryption. In practice the random oracle can be replaced by an appropriate hash function or block cipher, for example, SHA-3, AES. This protocol allows a client to delegate the most expensive part of some quantum algorithms, for example, Shor's algorithm. The previous protocols that are powerful enough to delegate Shor's algorithm require either many rounds of interactions or the existence of FHE. The protocol requires asymptotically fewer quantum gates on the client side compared to running Shor's algorithm locally. To hide the inputs, our scheme uses an encoding that maps one input qubit to multiple qubits. We then provide a novel generalization of classical garbled circuits ("reversible garbled circuits") to allow the computation of Toffoli circuits on this encoding. We also give a technique that can support the computation of phase gates on this encoding. To prove the security of this protocol, we study key dependent message(KDM) security in the quantum random oracle model. KDM security was not previously studied in quantum settings.Comment: 41 pages, 1 figures. Update to be consistent with the proceeding versio
    • …
    corecore