24 research outputs found

    Magnetic structure and phase diagram in a spin-chain system: Ca3_3Co2_2O6_6

    Full text link
    The low-temperature structure of the frustrated spin-chain compound Ca3_3Co2_2O6_6 is determined by the ground state of the 2D Ising model on the triangular lattice. At high-temperatures it transforms to the honeycomb magnetic structure. It is shown that the crossover between the two magnetic structures at 12 K arises from the entropy accumulated in the disordered chains. This interpretation is in an agreement with the experimental data. General rules for for the phase diagram of frustrated Ising chain compounds are formulated.Comment: 4 pages, 2 figure

    Enhancement of shot noise due to the fluctuation of Coulomb interaction

    Get PDF
    We have developed a theoretical formalism to investigate the contribution of fluctuation of Coulomb interaction to the shot noise based on Keldysh non-equilibrium Green's function method. We have applied our theory to study the behavior of dc shot noise of atomic junctions using the method of nonequilibrium Green's function combined with the density functional theory (NEGF-DFT). In particular, for atomic carbon wire consisting 4 carbon atoms in contact with two Al(100) electrodes, first principles calculation within NEGF-DFT formalism shows a negative differential resistance (NDR) region in I-V curve at finite bias due to the effective band bottom of the Al lead. We have calculated the shot noise spectrum using the conventional gauge invariant transport theory with Coulomb interaction considered explicitly on the Hartree level along with exchange and correlation effect. Although the Fano factor is enhanced from 0.6 to 0.8 in the NDR region, the expected super-Poissonian behavior in the NDR regionis not observed. When the fluctuation of Coulomb interaction is included in the shot noise, our numerical results show that the Fano factor is greater than one in the NDR region indicating a super-Poissonian behavior

    Field-driven magnetisation steps in Ca3Co2O6: A single-crystal neutron-diffraction study

    No full text
    The behaviour of the spin chain compound Ca3Co2O6 in an applied magnetic field has been the subject of a detailed single-crystal neutron diffraction study. The low-temperature magnetisation process is shown to be accompanied by clearly visible steps in the intensity of the ferromagnetic and antiferromagnetic Bragg peaks. The field and temperature dependence of the long-range and the short-range components of magnetic order in Ca3Co2O6 have been studied. Detailed measurements have shown that the presence of the short-range correlations cannot account for the reduction in intensity of the antiferromagnetic peaks at low temperatures. Copyright (c) EPLA, 201
    corecore