68 research outputs found

    Cosmological tachyon from cubic string field theory

    Full text link
    The classical dynamics of the tachyon scalar field of cubic string field theory is considered on a cosmological background. Starting from a nonlocal action with arbitrary tachyon potential, which encodes the bosonic and several supersymmetric cases, we study the equations of motion in the Hamilton-Jacobi formalism and with a generalized Friedmann equation, appliable in braneworld or modified gravity models. The cases of cubic (bosonic) and quartic (supersymmetric) tachyon potential in general relativity are automatically included. We comment the validity of the slow-roll approximation, the stability of the cosmological perturbations, and the relation between this tachyon and the Dirac-Born-Infeld one.Comment: 20 pages JHEP style, 1 figure; v4: misprints corrected, matches the published versio

    Time Lumps in Nonlocal Stringy Models and Cosmological Applications

    Full text link
    We study lump solutions in nonlocal toy models and their cosmological applications. These models are motivated by a description of D-brane decay within string field theory framework. In order to find cosmological solutions we use the simplest local approximation keeping only second derivative terms in nonlocal dynamics. We study a validity of this approximation in flat background where time lump solutions can be written explicitly. We work out the validity of this approximation. We show that our models at large time exhibit the phantom behaviour similar to the case of the string kink.Comment: Latex, 24 pages, 13 figures, Typos corrected, references adde

    Time Evolution in Superstring Field Theory on non-BPS brane.I. Rolling Tachyon and Energy-Momentum Conservation

    Full text link
    We derive equations of motion for the tachyon field living on an unstable non-BPS D-brane in the level truncated open cubic superstring field theory in the first non-trivial approximation. We construct a special time dependent solution to this equation which describes the rolling tachyon. It starts from the perturbative vacuum and approaches one of stable vacua in infinite time. We investigate conserved energy functional and show that its different parts dominate in different stages of the evolution. We show that the pressure for this solution has its minimum at zero time and goes to minus energy at infinite time.Comment: 16 pages, 5 figures; minor correction

    Non-local SFT Tachyon and Cosmology

    Full text link
    Cosmological scenarios built upon the generalized non-local String Field Theory and pp-adic tachyons are examined. A general kinetic operator involving an infinite number of derivatives is studied as well as arbitrary parameter pp. The late time dynamics of just the tachyon around the non-perturbative vacuum is shown to leave the cosmology trivial. A late time behavior of the tachyon and the scale factor of the FRW metric in the presence of the cosmological constant or a perfect fluid with w>1w>-1 is constructed explicitly and a possibility of non-vanishing oscillations of the total effective state parameter around the phantom divide is proven.Comment: 17 pages, LaTeX; v2: JHEP3 class is used, references adde

    Dynamics with Infinitely Many Derivatives: The Initial Value Problem

    Full text link
    Differential equations of infinite order are an increasingly important class of equations in theoretical physics. Such equations are ubiquitous in string field theory and have recently attracted considerable interest also from cosmologists. Though these equations have been studied in the classical mathematical literature, it appears that the physics community is largely unaware of the relevant formalism. Of particular importance is the fate of the initial value problem. Under what circumstances do infinite order differential equations possess a well-defined initial value problem and how many initial data are required? In this paper we study the initial value problem for infinite order differential equations in the mathematical framework of the formal operator calculus, with analytic initial data. This formalism allows us to handle simultaneously a wide array of different nonlocal equations within a single framework and also admits a transparent physical interpretation. We show that differential equations of infinite order do not generically admit infinitely many initial data. Rather, each pole of the propagator contributes two initial data to the final solution. Though it is possible to find differential equations of infinite order which admit well-defined initial value problem with only two initial data, neither the dynamical equations of p-adic string theory nor string field theory seem to belong to this class. However, both theories can be rendered ghost-free by suitable definition of the action of the formal pseudo-differential operator. This prescription restricts the theory to frequencies within some contour in the complex plane and hence may be thought of as a sort of ultra-violet cut-off.Comment: 40 pages, no figures. Added comments concerning fractional operators and the implications of restricting the contour of integration. Typos correcte

    Generating Erler-Schnabl-type Solution for Tachyon Vacuum in Cubic Superstring Field Theory

    Full text link
    We study a new set of identity-based solutions to analyze the problem of tachyon condensation in open bosonic string field theory and cubic superstring field theory. Even though these identity-based solutions seem to be trivial, it turns out that after performing a suitable gauge transformation, we are left with the known Erler-Schnabl-type solutions which correctly reproduce the value of the D-brane tension. This result shows explicitly that how a seemingly trivial solution can generate a non-trivial configuration which precisely represents to the tachyon vacuum.Comment: 22 pages, references added, appendix added, 2 subsections adde

    Bouncing and Accelerating Solutions in Nonlocal Stringy Models

    Full text link
    A general class of cosmological models driven by a non-local scalar field inspired by string field theories is studied. In particular cases the scalar field is a string dilaton or a string tachyon. A distinguished feature of these models is a crossing of the phantom divide. We reveal the nature of this phenomena showing that it is caused by an equivalence of the initial non-local model to a model with an infinite number of local fields some of which are ghosts. Deformations of the model that admit exact solutions are constructed. These deformations contain locking potentials that stabilize solutions. Bouncing and accelerating solutions are presented.Comment: Minor corrections, references added, published in JHE

    The radion and the perturbative metric in RS1

    Get PDF
    We calculate the linearized metric perturbations in the five dimensional two-brane model of Randall and Sundrum. In a carefully chosen gauge, we write down and decouple Einstein equations for the perturbations and get the final and simple perturbative metric ansatz. This ansatz turns out to be equal to the linear expansion of the metric solution of Charmousis et al. \cite{rubakov}. We show that this ansatz, the metric ansatz of Boos et al. \cite{boos} and the one of Das and Mitov \cite{das} are not incompatible, as it appears on the surface, but completely equivalent by an allowed gauge transformation that we give.Comment: 12 pages, no figures, LaTeX, typos fixed, 1 reference adde

    Dynamics with Infinitely Many Time Derivatives in Friedmann-Robertson-Walker Background and Rolling Tachyon

    Full text link
    Open string field theory in the level truncation approximation is considered. It is shown that the energy conservation law determines existence of rolling tachyon solution. The coupling of the open string field theory action to a Friedmann-Robertson-Walker metric is considered which leads to a new time dependent rolling tachyon solution is presented and possible cosmological consequences are discussed.Comment: 18 pages, 8 figure

    Towards a Resolution of the Cosmological Singularity in Non-local Higher Derivative Theories of Gravity

    Full text link
    One of the greatest problems of standard cosmology is the Big Bang singularity. Previously it has been shown that non-local ghostfree higher-derivative modifications of Einstein gravity in the ultra-violet regime can admit non-singular bouncing solutions. In this paper we study in more details the dynamical properties of the equations of motion for these theories of gravity in presence of positive and negative cosmological constants and radiation. We find stable inflationary attractor solutions in the presence of a positive cosmological constant which renders inflation {\it geodesically complete}, while in the presence of a negative cosmological constant a cyclic universe emerges. We also provide an algorithm for tracking the super-Hubble perturbations during the bounce and show that the bouncing solutions are free from any perturbative instability.Comment: 38 pages, 6 figures. V2: Added: a word to the title, clarifications, an appendix, many references. To appear in JCA
    corecore