102 research outputs found

    Phase transformation of PbSe/CdSe nanocrystals from core-shell to Janus structure studied by photoemission spectroscopy

    Get PDF
    Photoelectron spectroscopic measurements have been performed, with synchrotron radiation on PbSe/CdSe heteronanocrystals that initially consist of core-shell structures. The study of the chemical states of the main elements in the nanocrystals shows a reproducible and progressive change in the valence-band and core-level spectra under photon irradiation, whatever the core and shell sizes are. Such chemical modifications are explained in light of transmission electron microscopy observations and reveal a phase transformation of the nanocrystals: The core-shell nanocrystals undergo a morphological change toward a Janus structure with the formation of semidetached PbSe and CdSe clusters. Photoelectron spectroscopy gives new insight into the reorganization of the ligands anchored at the surface of the nanocrystals and the modification of the electronic structure of these heteronanocrystals

    Soft Dynamics simulation: 2. Elastic spheres undergoing a T1 process in a viscous fluid

    Get PDF
    Robust empirical constitutive laws for granular materials in air or in a viscous fluid have been expressed in terms of timescales based on the dynamics of a single particle. However, some behaviours such as viscosity bifurcation or shear localization, observed also in foams, emulsions, and block copolymer cubic phases, seem to involve other micro-timescales which may be related to the dynamics of local particle reorganizations. In the present work, we consider a T1 process as an example of a rearrangement. Using the Soft dynamics simulation method introduced in the first paper of this series, we describe theoretically and numerically the motion of four elastic spheres in a viscous fluid. Hydrodynamic interactions are described at the level of lubrication (Poiseuille squeezing and Couette shear flow) and the elastic deflection of the particle surface is modeled as Hertzian. The duration of the simulated T1 process can vary substantially as a consequence of minute changes in the initial separations, consistently with predictions. For the first time, a collective behaviour is thus found to depend on another parameter than the typical volume fraction in particles.Comment: 11 pages - 5 figure

    What is the future for nuclear fission technology? A technical opinion from the Guest Editors of VSI NFT series and the Editor of the Journal Nuclear Engineering and Design

    Get PDF
    The Nuclear Fission Technology (NFT) series of Virtual Special Issues (VSIs) for the Journal Nuclear Engineering and Design (J NED) was proposed in 2023, including the request to potential authors of manuscript to address the following questions: o For how long will (water-cooling based) large size nuclear reactor survive? o Will water-technology based SMRs displace large reactors? o Will non-water-cooling technology SMRs and micro-reactors have an industrial deployment? o Will breeding technology, including thorium exploitation, have due relevance? o Will ‘nuclear infrastructure’ (fuel supply, financial framework, competence by regulators for new designs, waste management, etc.) remain or be sufficiently robust? Several dozen Guest Editors (GEs), i.e., the authors of the present document, managed the activity together with the Editor-in-Chief (EiC) of the journal. More than one thousand scientists contributed 470+ manuscripts, not evenly distributed among the geographical regions of the world and not necessarily addressing directly the bullet-questions, but certainly providing a view of current research being done. Key conclusions are as follows: (a) Large size reactors are necessary for a sustainable and safe exploitation of nuclear fission technology; (b) The burning of 233U (from thorium) and 239Pu (from uranium) is unavoidable, as well as recycling residual uranium currently part of waste; (c) Nuclear infrastructures in countries that currently use, or are entering the use of, fission energy for electricity production need a century planning; (d) The adoption of small reactors for commercial naval propulsion, hydrogen production and desalination is highly recommended
    corecore