52 research outputs found

    Engineering Electromagnetic Properties of Periodic Nanostructures Using Electrostatic Resonances

    Full text link
    Electromagnetic properties of periodic two-dimensional sub-wavelength structures consisting of closely-packed inclusions of materials with negative dielectric permittivity ϵ\epsilon in a dielectric host with positive ϵh\epsilon_h can be engineered using the concept of multiple electrostatic resonances. Fully electromagnetic solutions of Maxwell's equations reveal multiple wave propagation bands, with the wavelengths much longer than the nanostructure period. It is shown that some of these bands are described using the quasi-static theory of the effective dielectric permittivity ϵqs\epsilon_{qs}, and are independent of the nanostructure period. Those bands exhibit multiple cutoffs and resonances which are found to be related to each other through a duality condition. An additional propagation band characterized by a negative magnetic permeability develops when a magnetic moment is induced in a given nano-particle by its neighbors. Imaging with sub-wavelength resolution in that band is demonstrated

    Active Negative Index Metamaterial Powered by an Electron Beam

    Get PDF
    A novel active negative index metamaterial that derives its gain from an electron beam is intro- duced. The metamaterial consists of a stack of equidistant parallel metal plates perforated by a periodic array of holes shaped as complementary split-ring resonators. It is shown that this structure supports a negative-index transverse magnetic electromagnetic mode that can resonantly interact with a relativistic electron beam. Such metamaterial can be used as a coherent radiation source or a particle accelerator.Comment: 5 pages, 4 figure

    Probing the ultimate limits of plasmonic enhancement.

    Get PDF
    Metals support surface plasmons at optical wavelengths and have the ability to localize light to subwavelength regions. The field enhancements that occur in these regions set the ultimate limitations on a wide range of nonlinear and quantum optical phenomena. We found that the dominant limiting factor is not the resistive loss of the metal, but rather the intrinsic nonlocality of its dielectric response. A semiclassical model of the electronic response of a metal places strict bounds on the ultimate field enhancement. To demonstrate the accuracy of this model, we studied optical scattering from gold nanoparticles spaced a few angstroms from a gold film. The bounds derived from the models and experiments impose limitations on all nanophotonic systems.Supported by Air Force Office of Scientific Research grant FA9550-09-1-0562 and by the Army Research Office through Multidisciplinary University Research Initiative grant W911NF-09-1-0539. Also supported by the Leverhulme Trust and the Marie Curie Actions (J.B.P., S.A.M., and A.I.F.-D.), NIH grant R21EB009862 (A.C.), and NIH F32 award F32EB009299 (R.T.H.)

    Acoustic cloak based on Bézier scatterers

    Full text link
    [EN] Among the different approaches proposed to design acoustic cloaks, the one consisting on the use of an optimum distribution of discrete scatters surrounding the concealing object has been successfully tested. The feasibility of acoustic cloaks mainly depends on the number and shape of the scatterers surrounding the object to be cloaked. This work presents a method allowing the reduction of the number of discrete scatterers by optimizing their external shape, which is here defined by a combination of cubic Bézier curves. Based on scattering cancellation, a two-dimensional directional cloak consisting of just 20 Bézier scatters has been designed, fabricated and experimentally characterized. The method of fundamental solutions has been implemented to calculate the interaction of an incident plane wave with scatterers of arbitrary shape. The acoustic cloak here proposed shows a performance, in terms of averaged visibility, similar to that consisting of 120 scatterers with equal circular cross sections. The operational frequency of the proposed cloak is 5940 Hz with a bandwidth of about 110 Hz.J. Sanchez-Dehesa acknowledges the financial support by the Spanish Ministerio de Economia y Competitividad and the European Union Fondo Europeo para el Desarrollo Regional (FEDER) under Grant with Ref. TEC2014-53088-C3-1-R. Lu Zhimiao acknowledges the financial support from the program of China Scholarships Council (No. 201503170282), Wen Jihong, Cai Li and Lu Zhimiao acknowledge the support by National Natural Science Foundation of China (Grant Nos 51275519 and 11372346)Lu, Z.; Sanchis Martínez, L.; Wen, J.; Cai, L.; Bi, Y.; Sánchez-Dehesa Moreno-Cid, J. (2018). Acoustic cloak based on Bézier scatterers. Scientific Reports. 8. https://doi.org/10.1038/s41598-018-30888-7S8Cummer, S. A. & Schurig, D. One path to acoustic cloaking. New J. Phys. 9(3), 45 (2007).Cai, L.-W. & Sánchez-Dehesa Analysis of Cummer–Schurig acoustic cloaking. J. New J. Phys. 9(12), 450 (2007).Chen, H. & Chan, C. Acoustic cloaking in three dimensions using acoustic metamaterials. Appl. Phys. Lett. 91(18), 183518 (2007).Norris, A. N. Acoustic cloaking theory. Proc. R. Soc. A 464(2097), 2411–2434 (2008).Torrent, D. & Sánchez-Dehesa, J. Acoustic cloaking in two dimensions: a feasible approach. New J. Phys. 10(6), 063015 (2008).Zhang, S., Xia, C. & Fang, N. Broadband acoustic cloak for ultrasound waves. Phys. Rev. Lett. 106, 024301 Jan (2011).Popa, B.-I., Zigoneanu, L. & Cummer, S. A. Experimental acoustic ground cloak in air. Phys. Rev. Lett. 106, 253901 Jun (2011).Zigoneanu, L., Popa, B.-I. & Cummer, S. A. Design and measurements of a broadband two-dimensional acoustic lens. Nat. Mat 13, 352 (2014).Kan, W. et al. Broadband acoustic cloaking within an arbitrary hard cavity. Phys. Rev. Applied 3, 064019 Jun (2015).Scandrett, C. L., Boisvert, J. E. & Howarth, T. R. Acoustic cloaking using layered pentamode materials. J. Acoust. Soc. Am. 127(5), 2856–2864 (2010).Chen, Y. et al. Broadband solid cloak for underwater acoustics. Phys. Rev. B 95, 180104 May (2017).Alù, A. & Engheta, N. Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 72(1), 016623 (2005).Guild, M. D., Alu, A. & Haberman, M. R. Cancellation of acoustic scattering from an elastic sphere. J. Acoust. Soc. Am. 129(3), 1355–1365 (2011).García-Chocano, V. M. et al. Acoustic cloak for airborne sound by inverse design. Appl. Phys. Lett. 99(7), 074102 (2011).Sanchis, L. et al. Three-Dimensional Axisymmetric Cloak Based on the Cancellation of Acoustic Scattering from a Sphere. Phys. Rev. Lett. 110, 124301 Mar (2013).Andkjær, J. & Sigmund, O. Topology optimized for Airborne sound. ASME J. Vib. Acoust. 135(2), 041011 (2013).Guild, M. D. Acoustic Cloaking of Spherical Objects Unsing Thin Elastic Coatings. Univ. of Texas at Austin (2012).Guild, M. D., Haberman, M. R. & Alú, A. Plasmonic-type Acoustic cloak made of a bilaminate shell. Phys. Rev. B 86(10), 104302 (2012).Rohde, C. A. et al. Experimental demonstration of underwater acoustic scattering cancellation. Sci. Rep. 5, 13175 (2015).Popa, B.-I. & Cummer, S. A. Cloaking with optimized homogeneous anisotropic layers. Phys. Rev. A 79, 023806 Feb (2009).Urzhumov, Y., Landy, N., Driscoll, T., Basov, D. & Smith, D. R. Thin low-loss dielectric coatings for freespace cloaking. Opt. Lett. 38(10), 1606–1608 (2013).Andkjaer, J. & Sigmund, O. Topology optimized low-contrast all-dielectric optical cloak. Appl. Phys. Lett. 98(2), 021112 (2011).Climente, A., Torrent, D. & Sánchez-Dehesa, J. Sound focusing by gradient index sonic lenses. Applied Physics Letters 97(10), 104103 (2010).Håkansson, A., Sánchez-Dehesa, J. & Sanchis, L. Acoustic lens design by genetic algorithms Phys. Rev. B 70, 214302 Dec (2004).Håkansson, A., Cervera, F. & Sánchez-Dehesa, J. Sound focusing by flat acoustic lenses without negative refraction. Applied Physics Letters 86(5), 054102 (2005).Li, D., Zigoneanu, L., Popa, B.-I. & Cummer, S. A. Design of an acoustic metamaterial lens using genetic algorithms. The Journal of the Acoustical Society of America 132(4), 2823–2833 (2012).Prautzsch, H., Wolfgang Boehm, W. & Paluszny, M. Bézier and B-Spline Techniques. Springer Science & Business Media (2002).Andersen, P. R., Cutanda-Henríquez, V., Aage, N. & Sánchez-Dehesa, J. Viscothermal effects on an acoustic cloak based on scattering cancellation. Proceedings of the 6th International Conference on Noise and Vibration Emerging methods (NOVEM 2018 ), 171971, June (2018).Golberg, D. Genetic Algorithms in Search, Optimization and Learning. Addison Wesley, Reading, MA (1989).Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by simulated annealing. Science 220(4598), 671–680 (1983).Sanchis, L., Cryan, M. J., Pozo, J., Craddock, I. J. & Rarity, J. G. Ultrahigh Purcell factor in photonic crystal slab microcavities Phys. Rev. B 76, 045118 Jul (2007).Karageorghis, A. & Fairweather, G. J. The method of fundamental solutions for axisymmetric acoustic scattering and radiation problems. J. Acoust. Soc. Am. 104(6), 3212–3218 (1998).Fairweather, G., Karageorghis, A. & Martin, P. The method of fundamental solutions for scattering and radiation problems. Engineering Analysis with Boundary Elements 27(7), 759–769 (2003).Seybert, A. F., Soenarko, B., Rizzo, F. J. & Shippy, D. J. A special integral equation formulation for acoustic radiation and scattering for axisymmetric bodies and boundary conditions. J. Acoust. Soc. Am. 80(4), 1241–1247 (1986)

    DNA-based Self-Assembly of Chiral Plasmonic Nanostructures with Tailored Optical Response

    Full text link
    Surface plasmon resonances generated in metallic nanostructures can be utilized to tailor electromagnetic fields. The precise spatial arrangement of such structures can result in surprising optical properties that are not found in any naturally occurring material. Here, the designed activity emerges from collective effects of singular components equipped with limited individual functionality. Top-down fabrication of plasmonic materials with a predesigned optical response in the visible range by conventional lithographic methods has remained challenging due to their limited resolution, the complexity of scaling, and the difficulty to extend these techniques to three-dimensional architectures. Molecular self-assembly provides an alternative route to create such materials which is not bound by the above limitations. We demonstrate how the DNA origami method can be used to produce plasmonic materials with a tailored optical response at visible wavelengths. Harnessing the assembly power of 3D DNA origami, we arranged metal nanoparticles with a spatial accuracy of 2 nm into nanoscale helices. The helical structures assemble in solution in a massively parallel fashion and with near quantitative yields. As a designed optical response, we generated giant circular dichroism and optical rotary dispersion in the visible range that originates from the collective plasmon-plasmon interactions within the nanohelices. We also show that the optical response can be tuned through the visible spectrum by changing the composition of the metal nanoparticles. The observed effects are independent of the direction of the incident light and can be switched by design between left- and right-handed orientation. Our work demonstrates the production of complex bulk materials from precisely designed nanoscopic assemblies and highlights the potential of DNA self-assembly for the fabrication of plasmonic nanostructures.Comment: 5 pages, 4 figure

    Plasmon oscillations in ellipsoid nanoparticles: beyond dipole approximation

    Full text link
    The plasmon oscillations of a metallic triaxial ellipsoid nanoparticle have been studied within the framework of the quasistatic approximation. A general method has been proposed for finding the analytical expressions describing the potential and frequencies of the plasmon oscillations of an arbitrary multipolarity order. The analytical expressions have been derived for an electric potential and plasmon oscillation frequencies of the first 24 modes. Other higher orders plasmon modes are investigated numerically.Comment: 33 pages, 12 figure

    Applied Physics A Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritons

    No full text
    ABSTRACT We theoretically and experimentally study electromagnetic properties of a novel mid-infrared metamaterial: optically thin silicon carbide (SiC) membrane perforated by an array of sub-wavelength holes. Giant absorption and transmission is found using Fourier transformed infrared (FTIR) microscopy and explained by introducing a frequency-dependent effective permittivity ε eff (ω) of the perforated film. The value of ε eff (ω) is determined by the excitation of two distinct types of hole resonances: delocalized slow surface polaritons (SSPs) whose frequencies are largely determined by the array period, and a localized surface polariton (LSP) corresponding to the resonance of an isolated hole. Only SSPs are shown to modify ε eff (ω) strongly enough to cause giant transmission and absorption. Because of the sub-wavelength period of the hole array, anomalous optical properties can be directly traced to surface polaritons, and their interpretation is not obscured by diffractive effects. Giant absorbance of this metamaterial can be utilized in designing highly efficient thermal radiation sources. PACS 41.20.Cv; 42.70.Qs; 71.45.Gm Introduction Diffraction of light is the major obstacle to increasing the density of optical circuits and integrating them with electronics [1]: light cannot be confined to dimensions much smaller than half of its wavelength λ. Utilizing materials with a negative dielectric permittivity circumvents the diffraction limit because interfaces between polaritonic (ε < 0) and dielectric (ε > 0) materials support quasi-electrostatic waves (surface polaritons) that can be confined to sub-λ dimensions. Negative ε can be due to either collective oscillations of conduction electrons (plasmons) in metals In this paper we report the results of the spectroscopic study of optically thin perforated SiC membranes with hole diameter D λ and period L < λ. SiC is chosen because of its low losses In addition, we show theoretically that two types of SPs are supported by the hole arrays in a polaritonic membrane: localized surface polaritons (LSPs) and delocalized SSPs. The frequency of the LSP depends on the geometric shape of the hole, is independent of the array period, and, in contradiction to earlier report
    • …
    corecore