243 research outputs found

    Imaging Large Scale Structure in the X-ray Sky

    Get PDF
    We present the first results from a wide solid angle, moderately deep {\it Chandra} survey of the Lockman Hole North-West region. Our 9 ACIS-I fields cover an effective solid angle of 0.4 deg2^{2} and reach a depth of 3×10163 \times 10^{-16} \ergpcmsqps in the 0.4--2 keV band and 3×10153 \times 10^{-15} \ergpcmsqps in the 2--8 keV band. The best fit logN-logS for the entire field, the largest contiguous {\it Chandra} field yet observed, matches well onto that of the {\it Chandra} Deep Field North. We show that the full range of the `cosmic variance' previously seen in different {\it Chandra} fields is reproduced in this small region of the sky. Counts-in-cells analysis shows that the hard band sources are more strongly correlated than the soft band sources.Comment: To be published in ApJL v58

    Biases in Virial Black Hole Masses: An SDSS Perspective

    Full text link
    We compile black hole (BH) masses for 60,000\sim 60,000 quasars in the redshift range 0.1z4.50.1 \lesssim z \lesssim 4.5 included in the Fifth Data Release of the Sloan Digital Sky Survey (SDSS), using virial BH mass estimators based on the \hbeta, \MgII, and \CIV emission lines. We find that: (1) within our sample, the widths of the three lines follow log-normal distributions, with means and dispersions that do not depend strongly on luminosity or redshift;(2) the \MgII- and \hbeta-estimated BH masses are consistent with one another; and (3) the \CIV BH mass estimator may be more severely affected by a disk wind component than the \MgII and \hbeta estimators, giving a positive bias in mass correlated with the \CIV-\MgII blueshift. Most SDSS quasars have virial BH masses in the range 108109M10^8-10^9 M_\odot. There is a clear upper mass limit of 1010M\sim 10^{10} M_\odot for active BHs at z2z \gtrsim 2, decreasing at lower redshifts. Making the reasonable assumptions that the underlying BH mass distribution decreases with mass and that the Eddington ratio distribution at fixed BH mass has non-zero width, we show that the measured virial BH mass distribution and Eddington ratio distribution are subject to Malmquist bias. A radio quasar subsample (with 1.5z2.31.5\lesssim z\lesssim 2.3) has mean virial BH mass larger by 0.12\sim 0.12 dex than the whole sample. A broad absorption line (BAL) quasar subsample (with 1.7z2.21.7\lesssim z\lesssim 2.2) has identical virial mass distribution as the nonBAL sample, with no mean offset. (Abridged)Comment: Updated virial mass measurements; improved presentation of the MC simulation; added new discussion sections; conclusions unchanged. The full table1 is available at http://www.astro.princeton.edu/~yshen/BH_mass/datafile1.txt.tar.g

    Constraining the Lifetime of Quasars from their Spatial Clustering

    Full text link
    The lifetime t_Q of the luminous phase of quasars is constrained by current observations to be between 10^6 and 10^8 years, but is otherwise unkown. We model the quasar luminosity function in detail in the optical and X-ray bands using the Press-Schechter formalism, and show that the expected clustering of quasars depends strongly on their assumed lifetime. We quantify this dependence, and find that existing measurements of the correlation length of quasars are consistent with the range 10^6 < t_Q < 10^8 years. We then show that future measurements of the power spectrum of quasars out to z=3, from the 2dF or Sloan Digital Sky Survey, can significantly improve this constraint, and in principle allow a precise determination of t_Q. We estimate the systematic errors introduced by uncertainties in the modeling of the quasar-halo relationship, as well as by the possible existence of obscured quasars.Comment: ApJ, in press (emulateapj

    Quantum phase transition to unconventional multi-orbital superfluidity in optical lattices

    Full text link
    Orbital physics plays a significant role for a vast number of important phenomena in complex condensed matter systems such as high-Tc_c superconductivity and unconventional magnetism. In contrast, phenomena in superfluids -- especially in ultracold quantum gases -- are commonly well described by the lowest orbital and a real order parameter. Here, we report on the observation of a novel multi-orbital superfluid phase with a {\it complex} order parameter in binary spin mixtures. In this unconventional superfluid, the local phase angle of the complex order parameter is continuously twisted between neighboring lattice sites. The nature of this twisted superfluid quantum phase is an interaction-induced admixture of the p-orbital favored by the graphene-like band structure of the hexagonal optical lattice used in the experiment. We observe a second-order quantum phase transition between the normal superfluid (NSF) and the twisted superfluid phase (TSF) which is accompanied by a symmetry breaking in momentum space. The experimental results are consistent with calculated phase diagrams and reveal fundamentally new aspects of orbital superfluidity in quantum gas mixtures. Our studies might bridge the gap between conventional superfluidity and complex phenomena of orbital physics.Comment: 5 pages, 4 figure

    On the Cosmological Evolution of the Luminosity Function and the Accretion Rate of Quasars

    Full text link
    We consider a class of models for the redshift evolution (between 0\lsim z \lsim 4) of the observed optical and X-ray quasar luminosity functions (LFs), with the following assumptions: (i) the mass-function of dark matter halos follows the Press-Schechter theory, (ii) the black hole (BH) mass scales linearly with the halo mass, (iii) quasars have a constant universal lifetime, and (iv) a thin accretion disk provides the optical luminosity of quasars, while the X-ray/optical flux ratio is calibrated from a sample of observed quasars. The mass accretion rate M˙\dot{M} onto quasar BHs is a free parameter of the models, that we constrain using the observed LFs. The accretion rate M˙\dot M inferred from either the optical or X-ray data under these assumptions generally decreases as a function of cosmic time from z4z \simeq 4 to z0z \simeq 0. We find that a comparable accretion rate is inferred from the X-ray and optical LF only if the X-ray/optical flux ratio decreases with BH mass. Near z0z\simeq 0, M˙\dot M drops to substantially sub-Eddington values at which advection-dominated accretion flows (ADAFs) exist. Such a decline of M˙\dot M, possibly followed by a transition to radiatively inefficient ADAFs, could explain both the absence of bright quasars in the local universe and the faintness of accreting BHs at the centers of nearby galaxies. We argue that a decline of the accretion rate of the quasar population is indeed expected in cosmological structure formation models.Comment: Latex, 23 pages, 9 figures, accepted for publication in Ap

    Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice

    Full text link
    Dirac points lie at the heart of many fascinating phenomena in condensed matter physics, from massless electrons in graphene to the emergence of conducting edge states in topological insulators [1, 2]. At a Dirac point, two energy bands intersect linearly and the particles behave as relativistic Dirac fermions. In solids, the rigid structure of the material sets the mass and velocity of the particles, as well as their interactions. A different, highly flexible approach is to create model systems using fermionic atoms trapped in the periodic potential of interfering laser beams, a method which so far has only been applied to explore simple lattice structures [3, 4]. Here we report on the creation of Dirac points with adjustable properties in a tunable honeycomb optical lattice. Using momentum-resolved interband transitions, we observe a minimum band gap inside the Brillouin zone at the position of the Dirac points. We exploit the unique tunability of our lattice potential to adjust the effective mass of the Dirac fermions by breaking inversion symmetry. Moreover, changing the lattice anisotropy allows us to move the position of the Dirac points inside the Brillouin zone. When increasing the anisotropy beyond a critical limit, the two Dirac points merge and annihilate each other - a situation which has recently attracted considerable theoretical interest [5-9], but seems extremely challenging to observe in solids [10]. We map out this topological transition in lattice parameter space and find excellent agreement with ab initio calculations. Our results not only pave the way to model materials where the topology of the band structure plays a crucial role, but also provide an avenue to explore many-body phases resulting from the interplay of complex lattice geometries with interactions [11, 12]

    Topological orbital ladders

    Full text link
    We unveil a topological phase of interacting fermions on a two-leg ladder of unequal parity orbitals, derived from the experimentally realized double-well lattices by dimension reduction. Z2Z_2 topological invariant originates simply from the staggered phases of spsp-orbital quantum tunneling, requiring none of the previously known mechanisms such as spin-orbit coupling or artificial gauge field. Another unique feature is that upon crossing over to two dimensions with coupled ladders, the edge modes from each ladder form a parity-protected flat band at zero energy, opening the route to strongly correlated states controlled by interactions. Experimental signatures are found in density correlations and phase transitions to trivial band and Mott insulators.Comment: 12 pages, 5 figures, Revised title, abstract, and the discussion on Majorana numbe

    Increase Productivity Through Knowledge Management

    Get PDF
    Increase in competition level requires companies to improve the efficiency of work force use characterized by labor productivity. Professional knowledge of staff and its experience play the key role in it. The results of Extrusion Line operator's working time analysis are performed in this article. The analysis revealed that the reasons of working time ineffective use connected with inadequate information exchange and knowledge management in the company. Authors suggest the way to solve this problem: the main sources of knowledge in engineering enterprise have been defined, the conditions of success and the stages of knowledge management control have been stated

    The Cosmic Evolution of Hard X-ray Selected Active Galactic Nuclei

    Full text link
    We use highly spectroscopically complete deep and wide-area Chandra surveys to determine the cosmic evolution of hard X-ray-selected AGNs. We determine hard X-ray luminosity functions (HXLFs) for all spectral types and for broad-line AGNs (BLAGNs) alone. At z<1.2, both are well described by pure luminosity evolution. Thus, all AGNs drop in luminosity by almost an order of magnitude over this redshift range. We show that this observed drop is due to AGN downsizing. We directly compare our BLAGN HXLFs with the optical QSO LFs and find that the optical QSO LFs do not probe faint enough to see the downturn in the BLAGN HXLFs. We rule out galaxy dilution as a partial explanation for the observation that BLAGNs dominate the number densities at the higher X-ray luminosities, while optically-narrow AGNs (FWHM<2000 km/s) dominate at the lower X-ray luminosities by measuring the nuclear UV/optical properties of the Chandra sources using the HST ACS GOODS-North data. The UV/optical nuclei of the optically-narrow AGNs are much weaker than expected if they were similar to the BLAGNs. We therefore postulate the need for a luminosity dependent unified model. Alternatively, the BLAGNs and the optically-narrow AGNs could be intrinsically different source populations. We cover both interpretations by constructing composite spectral energy distributions--including long-wavelength data from the MIR to the submillimeter--by spectral type and by X-ray luminosity. We use these to infer the bolometric corrections (from hard X-ray luminosities to bolometric luminosities) needed to map the accretion history. We determine the accreted supermassive black hole mass density for all spectral types and for BLAGNs alone using the observed evolution of the hard X-ray energy density production rate and our inferred bolometric corrections.Comment: 36 pages, Accepted by The Astronomical Journal (scheduled for Feb 2005), Figure 15a-c greyscale images can be found at http://www.astro.wisc.edu/~barger/barger.fig15a.jpeg et
    corecore