2 research outputs found
Wavelets operational methods for fractional differential equations and systems of fractional differential equations
In this thesis, new and effective operational methods based on polynomials and
wavelets for the solutions of FDEs and systems of FDEs are developed. In particular
we study one of the important polynomial that belongs to the Appell family of
polynomials, namely, Genocchi polynomial. This polynomial has certain great
advantages based on which an effective and simple operational matrix of derivative
was first derived and applied together with collocation method to solve some singular
second order differential equations of Emden-Fowler type, a class of generalized
Pantograph equations and Delay differential systems. A new operational matrix of
fractional order derivative and integration based on this polynomial was also
developed and used together with collocation method to solve FDEs, systems of
FDEs and fractional order delay differential equations. Error bound for some of the
considered problems is also shown and proved. Further, a wavelet bases based on
Genocchi polynomials is also constructed, its operational matrix of fractional order
derivative is derived and used for the solutions of FDEs and systems of FDEs. A
novel approach for obtaining operational matrices of fractional derivative based on
Legendre and Chebyshev wavelets is developed, where, the wavelets are first
transformed into corresponding shifted polynomials and the transformation matrices
are formed and used together with the polynomials operational matrices of fractional
derivatives to obtain the wavelets operational matrix. These new operational matrices
are used together with spectral Tau and collocation methods to solve FDEs and
systems of FDEs
Assessment of Sewage Molecular Markers in Port Dickson Coast and Kim Kim River with Sediment Linear Alkylbenzenes
The present study aimed to determine linear alkylbenzenes (LABs) concentrations as organic molecular marker for sewage pollution in the sediment samples collected from Coast of Port Dickson and Kim Kim River, Peninsular Malaysia. The adverse effects of anthropogenic inputs into the rivers and coastal environment could be detected by molecular organic markers such as LABs. The sediments were processed; their sources were identified and tested by gas chromatography-mass spectrometry (GC-MS). The significance of the differences among sampling stations for LAB concentrations and distribution at p < 0.05 was performed by analysis of variance and Post Hoc Tests, LSD procedures (ANOVA) and Pearson correlation coefficient. LABs indices which include internal to external (I/E) congeners, long to short chains L/S and homologs C13/C12 were used to identify the sewage treatment and degradation levels. Results of this study are statistically uncovered that the range of RLABs concentration in the investigated
locations was between 112.0; 88.3 and 256.0; 119.0 ng�g1 dw, respectively. There was significant difference (p < 0.05) of LAB homologs with high percentage of C13-LAB homologs along sampling locations. The calculated LAB ratios (I/E) were within the range between 2.0; 1.7 and 4.1, 2.0, demonstrated that, the treated effluents from primary and secondary sources were discharged to the study areas. The degradation of LABs was 40–64% and 34–38% in the studied locations. The findings of this study suggested the powerfully indicators of LABs in tracing anthropogenic sewage contamination and the necessity of continuing wastewater treatment system
improvement