181,932 research outputs found
Recommended from our members
High-Order Dual-Port Quasi-Absorptive Microstrip Coupled-Line Bandpass Filters
In this article, we present the first demonstration of distributed and symmetrical all-band quasi-absorptive filters that can be designed to arbitrarily high orders. The proposed quasi-absorptive filter consists of a bandpass section (reflective-type coupled-line filter) and absorptive sections (a matched resistor in series with a shorted quarter-wavelength transmission line). Through a detailed analysis, we show that the absorptive sections not only eliminate out-of-band reflections but also determine the passband bandwidth (BW). As such, the bandpass section mainly determines the out-of-band roll-off and the order of the filter can be arbitrarily increased without affecting the filter BW by cascading more bandpass sections. A set of 2.45-GHz one-, two-, and three-pole quasi-absorptive microstrip bandpass filters are designed and measured. The filters show simultaneous input and output absorption across both the passband and the stopband. Measurement results agree very well with the simulation and validate the proposed design concept
Exponential stabilization of a class of stochastic system with Markovian jump parameters and mode-dependent mixed time-delays
Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected].
By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this technical note, the globally exponential stabilization problem is investigated for a general class of stochastic systems with both Markovian jumping parameters and mixed time-delays. The mixed mode-dependent time-delays consist of both discrete and distributed delays. We aim to design a memoryless state feedback controller such that the closed-loop system is stochastically exponentially stable in the mean square sense. First, by introducing a new Lyapunov-Krasovskii functional that accounts for the mode-dependent mixed delays, stochastic analysis is conducted in order to derive a criterion for the exponential stabilizability problem. Then, a variation of such a criterion is developed to facilitate the controller design by using the linear matrix inequality (LMI) approach. Finally, it is shown that the desired state feedback controller can be characterized explicitly in terms of the solution to a set of LMIs. Numerical simulation is carried out to demonstrate the effectiveness of the proposed methods.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., the National 973 Program of China under Grant 2009CB320600, and the Alexander von Humboldt Foundation of Germany. Recommended by Associate Editor G. Chesi
Recommended from our members
Openness and efficiency of India and China relative to the world economy: a comparative study.
This paper adopts a dynamic approach to investigate the impact of openness on
efficiency improvement of the world economy and compares the linkages between openness
and performance in India and China. Based on a panel of data set of 126 countries over the
period 1970-98, the world production frontier is established using stochastic frontier
techniques. The economic efficiency of an economy relative to the world production frontier
is identified and its determinants are examined. The results indicate that international trade,
foreign direct investment (FDI) and its interaction with labour quality improvement play a
significant role in improving efficiency, respectively, although the trade growth in our test is
not as robust as FDI. Contrary to the conventional perception, India performed better than
China in raising productivity until the mid-1990s. However, China has experienced a higher
degree of openness and therefore a faster rate of catching-up with the world's best practice
Robust H∞ filtering for discrete nonlinear stochastic systems with time-varying delay
This is the postprint version of the article. The official published version can be accessed from the link below - © 2007 Elsevier IncIn this paper, we are concerned with the robust H∞ filtering problem for a class of nonlinear discrete time-delay stochastic systems. The system under study involves parameter uncertainties, stochastic disturbances, time-varying delays and sector-like nonlinearities. The problem addressed is the design of a full-order filter such that, for all admissible uncertainties, nonlinearities and time delays, the dynamics of the filtering error is constrained to be robustly asymptotically stable in the mean square, and a prescribed H∞ disturbance rejection attenuation level is also guaranteed. By using the Lyapunov stability theory and some new techniques, sufficient conditions are first established to ensure the existence of the desired filtering parameters. These conditions are dependent on the lower and upper bounds of the time-varying delays. Then, the explicit expression of the desired filter gains is described in terms of the solution to a linear matrix inequality (LMI). Finally, a numerical example is exploited to show the usefulness of the results derived.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G, the Alexander von Humboldt Foundation of Germany, the National Natural Science Foundation of China (60774073 and 10471119), the NSF of Jiangsu Province of China (BK2007075 and BK2006064), the Natural Science Foundation of Jiangsu Education Committee of China under Grant 06KJD110206, and the Scientific Innovation Fund of Yangzhou University of China under Grant 2006CXJ002
Fermions in gravity and gauge backgrounds on a brane world
We solve the fermionic zero modes in gravity and gauge backgrounds on a brane
involving a warped geometry, and study the localization of spin 1/2 fermionic
field on the brane world. The result is that there exist massless spin 1/2
fermions which can be localized on the bulk with the exponentially decreasing
warp factor if including U(1) gauge background. Two special cases of gauge
backgrounds on the extra dimensional manifold are discussed.Comment: 11 pages, no figures, final versio
Zero Modes of Matter Fields on Scalar Flat Thick Branes
Zero modes of various matters with spin 0, 1 and 1/2 on a class of scalar
flat thick branes are discussed in this paper. We show that scalar field with
spin 0 is localized on all thick branes without additional condition, while
spin 1 vector field is not localized. In addition, for spin 1/2 fermionic
field, the zero mode is localized on the branes under certain conditions.Comment: 11 pages,no figure
Fe/Ni ratio in the Ant Nebula Mz 3
We have analyzed the [Fe II] and [Ni II] emission lines in the bipolar
planetary nebula Mz~3. We find that the [Fe II] and [Ni II] lines arise
exclusively from the central regions. Fluorescence excitation in the formation
process of these lines is negligible for this low-excitation nebula. From the
[Fe II]/[Ni II] ratio, we obtain a higher Fe/Ni abundance ratio with respect to
the solar value. The current result provides further supporting evidence for Mz
3 as a symbiotic Mira.Comment: 2 pages, 1 figure, to be published in the Proceedings of the IAU
Symposium 234: Planetary Nebulae in Our Galaxy and Beyond, eds. M.J. Barlow,
R.H. Mende
An extended Kalman filtering approach to modeling nonlinear dynamic gene regulatory networks via short gene expression time series
Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, the extended Kalman filter (EKF) algorithm is applied to model the gene regulatory network from gene time series data. The gene regulatory network is considered as a nonlinear dynamic stochastic model that consists of the gene measurement equation and the gene regulation equation. After specifying the model structure, we apply the EKF algorithm for identifying both the model parameters and the actual value of gene expression levels. It is shown that the EKF algorithm is an online estimation algorithm that can identify a large number of parameters (including parameters of nonlinear functions) through iterative procedure by using a small number of observations. Four real-world gene expression data sets are employed to demonstrate the effectiveness of the EKF algorithm, and the obtained models are evaluated from the viewpoint of bioinformatics
Localization of fermionic fields on braneworlds with bulk tachyon matter
Recently, Pal and Skar in [arXiv:hep-th/0701266] proposed a mechanism to
arise the warped braneworld models from bulk tachyon matter, which are endowed
with a thin brane and a thick brane. In this framework, we investigate
localization of fermionic fields on these branes. As in the 1/2 spin case, the
field can be localized on both the thin and thick branes with inclusion of
scalar background. In the 3/2 spin extension, the general supergravity action
coupled to chiral supermultiplets is considered to produce the localization on
both the branes as a result.Comment: 9 pages, no figure
Recommended from our members
A low-bandgap dimeric porphyrin molecule for 10% efficiency solar cells with small photon energy loss
Dimeric porphyrin molecules have great potential as donor materials for high performance bulk heterojunction organic solar cells (OSCs). Recently reported dimeric porphyrins bridged by ethynylenes showed power conversion efficiencies (PCEs) of more than 8%. In this study, we design and synthesize a new conjugated dimeric D-A porphyrin ZnP2BT-RH, in which the two porphyrin units are linked by an electron accepting benzothiadiazole (BT) unit. The introduction of the BT unit enhances the electron delocalization, resulting in a lower highest occupied molecular orbital (HOMO) energy level and an increased molar extinction coefficient in the near-infrared (NIR) region. The bulk heterojunction solar cells with ZnP2BT-RH as the donor material exhibit a high PCE of up to 10% with a low energy loss (Eloss) of only 0.56 eV. The 10% PCE is the highest for porphyrin-based OSCs with a conventional structure, and this Eloss is also the smallest among those reported for small molecule-based OSCs with a PCE higher than 10% to date
- …