15,732 research outputs found

    Deduction of the quantum numbers of low-lying states of 6-nucleon systems based on symmetry

    Get PDF
    The inherent nodal structures of the wavefunctions of 6-nucleon systems have been investigated. The existence of a group of six low-lying states dominated by L=0 has been deduced. The spatial symmetries of these six states are found to be mainly {4,2} and {2,2,2}.Comment: 8 pages, no figure

    Partial spin freezing in the quasi-two-dimensional La2(Cu,Li)O4

    Full text link
    In conventional spin glasses, the magnetic interaction is not strongly anisotropic and the entire spin system freezes at low temperature. In La2(Cu,Li)O4, for which the in-plane exchange interaction dominates the interplane one, only a fraction of spins with antiferromagnetic correlations extending to neighboring planes become spin-glass. The remaining spins with only in-plane antiferromagnetic correlations remain spin-liquid at low temperature. Such a novel partial spin freezing out of a spin-liquid observed in this cold neutron scattering study is likely due to a delicate balance between disorder and quantum fluctuations in the quasi-two dimensional S=1/2 Heisenberg system.Comment: 4 pages, 4 figure

    Hyperfine Interactions in the Heavy Fermion CeMIn_5 Systems

    Full text link
    The CeMIn_5 heavy fermion compounds have attracted enormous interest since their discovery six years ago. These materials exhibit a rich spectrum of unusual correlated electron behavior, and may be an ideal model for the high temperature superconductors. As many of these systems are either antiferromagnets, or lie close to an antiferromagnetic phase boundary, it is crucial to understand the behavior of the dynamic and static magnetism. Since neutron scattering is difficult in these materials, often the primary source of information about the magnetic fluctuations is Nuclear Magnetic Resonance (NMR). Therefore, it is crucial to have a detailed understanding of how the nuclear moments interact with conduction electrons and the local moments present in these systems. Here we present a detailed analysis of the hyperfine coupling based on anisotropic hyperfine coupling tensors between nuclear moments and local moments. Because the couplings are symmetric with respect to bond axes rather than crystal lattice directions, the nuclear sites can experience non-vanishing hyperfine fields even in high symmetry sites.Comment: 15 pages, 5 figure
    corecore