228,637 research outputs found

    Automatic loop-shaping in quantitative feedback theory using genetic algorithms

    Get PDF
    Design automation in Quantitative Feedback Theory (QFT) is addressed in this paper. An automatic loop shaping procedure based on Genetic Algorithms (GAs) is developed, where a robust controller for uncertain plants can be designed automatically such that the cost of feedback is minimised and all robust stability and performance specifcations are satisfed. The developed approach can improve the current QFT design in at least two aspects. One is in the design of an initial controller for complicated plants, which might be difficult even to find a stabilising controller manually. The other is in improving the initial manual design by optimisation of the performance index under the prescribed requirements within the neighbourhood of the manual design. An illustrative example which compares manual loop shaping with automatic loop shaping is presented

    Evolutionary computation enabled game theory based modelling of electricity market behaviours and applications

    Get PDF
    The collapse of the Californian electricity market system in 2001 has highlighted urgency in research in intelligent electricity trading systems and strategies involving both suppliers and customs. In their trading systems, power generation companies under the new electricity trading arrangement (NETA) of the UK are now developing gaming strategies. However, modelling of such "intelligent" market behaviours is extremely challenging, because traditional mathematical and computer modelling techniques cannot cope with the involvement of game theory. In this paper, evolutionary computation enabled modelling of such system is presented. Both competitive and cooperative game theory strategies are taken into account in evolving the intelligent model. The model then leads to intelligent trading strategy development and decision support. Experimental tests, verification and validation are carried out with various strategies, using different model scales and data published by NETA. Results show that evolutionary computation enabled game theory involved modelling and decision making provides an effective tool for NETA trading analysis, prediction and support

    Comparisons and Applications of Four Independent Numerical Approaches for Linear Gyrokinetic Drift Modes

    Full text link
    To help reveal the complete picture of linear kinetic drift modes, four independent numerical approaches, based on integral equation, Euler initial value simulation, Euler matrix eigenvalue solution and Lagrangian particle simulation, respectively, are used to solve the linear gyrokinetic electrostatic drift modes equation in Z-pinch with slab simplification and in tokamak with ballooning space coordinate. We identify that these approaches can yield the same solution with the difference smaller than 1\%, and the discrepancies mainly come from the numerical convergence, which is the first detailed benchmark of four independent numerical approaches for gyrokinetic linear drift modes. Using these approaches, we find that the entropy mode and interchange mode are on the same branch in Z-pinch, and the entropy mode can have both electron and ion branches. And, at strong gradient, more than one eigenstate of the ion temperature gradient mode (ITG) can be unstable and the most unstable one can be on non-ground eigenstates. The propagation of ITGs from ion to electron diamagnetic direction at strong gradient is also observed, which implies that the propagation direction is not a decisive criterion for the experimental diagnosis of turbulent mode at the edge plasmas.Comment: 12 pages, 10 figures, accept by Physics of Plasma

    Implantable RF-coiled chip packaging

    Get PDF
    In this paper, we present an embedded chip integration technology that utilizes silicon housings and flexible parylene radio frequency (RF) coils. As a demonstration of this technology, a flexible parylene RF coil has been integrated with an RF identification (RFID) chip. The coil has an inductance of 16 μH, with two layers of metal completely encapsulated in parylene-C. The functionality of the embedded chip is verified using an RFID reader module. Accelerated-lifetime soak testing has been performed in saline, and the results show that the silicon chip is well protected and the lifetime of our parylene-encapsulated RF coil at 37 °C is more than 20 years
    • …
    corecore