30,980 research outputs found

    Dilaton as a Dark Matter Candidate and its Detection

    Full text link
    Assuming that the dilaton is the dark matter of the universe, we propose an experiment to detect the relic dilaton using the electromagnetic resonant cavity, based on the dilaton-photon conversion in strong electromagnetic background. We calculate the density of the relic dilaton, and estimate the dilaton mass for which the dilaton becomes the dark matter of the universe. With this we calculate the dilaton detection power in the resonant cavity, and compare it with the axion detection power in similar resonant cavity experiment.Comment: 23 pages, 2 figure

    Fault-tolerant linear optics quantum computation by error-detecting quantum state transfer

    Get PDF
    A scheme for linear optical implementation of fault-tolerant quantum computation is proposed, which is based on an error-detecting code. Each computational step is mediated by transfer of quantum information into an ancilla system embedding error-detection capability. Photons are assumed to be subjected to both photon loss and depolarization, and the threshold region of their strengths for scalable quantum computation is obtained, together with the amount of physical resources consumed. Compared to currently known results, the present scheme reduces the resource requirement, while yielding a comparable threshold region.Comment: 9 pages, 7 figure

    Color Reflection Invariance and Monopole Condensation in QCD

    Get PDF
    We review the quantum instability of the Savvidy-Nielsen-Olesen (SNO) vacuum of the one-loop effective action of SU(2) QCD, and point out a critical defect in the calculation of the functional determinant of the gluon loop in the SNO effective action. We prove that the gauge invariance, in particular the color reflection invariance, exclude the unstable tachyonic modes from the gluon loop integral. This guarantees the stability of the magnetic condensation in QCD.Comment: 28 pages, 3 figures, JHEP styl

    Dilatonic Dark Matter and Unified Cosmology -- a New Paradigm --

    Get PDF
    We study the possibility that the dilaton -- the fundamental scalar field which exists in all the existing unified field theories -- plays the role of the dark matter of the universe. We find that the condition for the dilaton to be the dark matter strongly restricts its mass to be around 0.5 keV or 270 MeV. For the other mass ranges, the dilaton either undercloses or overcloses the universe. The 0.5 keV dilaton has the free-streaming distance of about 1.4 Mpc and becomes an excellent candidate of a warm dark matter, while the 270 MeV one has the free-streaming distance of about 7.4 pc and becomes a cold dark matter. We discuss the possible ways to detect the dilaton experimentallyComment: 19 pages, 5 figure, Talk given at the IIth RESCEU International Symposium on Dark Matter in the Universe and its Direct Detections, 1996. Proceedings published by Academic Press, Tokyo, edited by K sat

    Acute effect of ketogenic diet on metabolic flexibility during exercise in adults

    Get PDF
    poste

    Multilevel Modulation of a Sensory Motor Circuit during C. elegans Sleep and Arousal

    Get PDF
    Sleep is characterized by behavioral quiescence, homeostasis, increased arousal threshold, and rapid reversibility. Understanding how these properties are encoded by a neuronal circuit has been difficult, and no single molecular or neuronal pathway has been shown to be responsible for the regulation of sleep. Taking advantage of the well-mapped neuronal connections of Caenorhabditis elegans and the sleep-like states in this animal, we demonstrate the changed properties of both sensory neurons and downstream interneurons that mediate sleep and arousal. The ASH sensory neuron displays reduced sensitivity to stimuli in the sleep-like state, and the activity of the corresponding interneurons in ASH’s motor circuit becomes asynchronous. Restoration of interneuron synchrony is sufficient for arousal. The multilevel circuit depression revealed provides an elegant strategy to promote a robust decrease in arousal while allowing for rapid reversibility of the sleep state

    Neutron scattering study of novel magnetic order in Na0.5CoO2

    Full text link
    We report polarized and unpolarized neutron scattering measurements of the magnetic order in single crystals of Na0.5CoO2. Our data indicate that below T_N=88 K the spins form a novel antiferromagnetic pattern within the CoO2 planes, consisting of alternating rows of ordered and non-ordered Co ions. The domains of magnetic order are closely coupled to the domains of Na ion order, consistent with such a two-fold symmetric spin arrangement. Magnetoresistance and anisotropic susceptibility measurements further support this model for the electronic ground state.Comment: 4 pages, 4 figure

    Finite-size scaling theory for explosive percolation transitions

    Full text link
    The finite-size scaling (FSS) theory for continuous phase transitions has been useful in determining the critical behavior from the size dependent behaviors of thermodynamic quantities. When the phase transition is discontinuous, however, FSS approach has not been well established yet. Here, we develop a FSS theory for the explosive percolation transition arising in the Erd\H{o}s and R\'enyi model under the Achlioptas process. A scaling function is derived based on the observed fact that the derivative of the curve of the order parameter at the critical point tct_c diverges with system size in a power-law manner, which is different from the conventional one based on the divergence of the correlation length at tct_c. We show that the susceptibility is also described in the same scaling form. Numerical simulation data for different system sizes are well collapsed on the respective scaling functions.Comment: 5 pages, 5 figure
    • …
    corecore