123,993 research outputs found

    Magnetoresistance oscillations in two-dimensional electron systems under monochromatic and bichromatic radiations

    Full text link
    The magnetoresistance oscillations in high-mobility two-dimensional electron systems induced by two radiation fields of frequencies 31 GHz and 47 GHz, are analyzed in a wide magnetic-field range down to 100 G, using the balance-equation approach to magnetotransport for high-carrier-density systems. The frequency mixing processes are shown to be important. The predicted peak positions, relative heights, radiation-intensity dependence and their relation with monochromatic resistivities are in good agreement with recent experimental finding [M. A. Zudov {\it et al.} Phys. Rev. Lett. 96, 236804 (2006)].Comment: 4 pages, 3 figure

    Multiple and virtual photon processes in radiation-induced magnetoresistance oscillations in two-dimensional electron systems

    Full text link
    Recently discovered new structures and zero-resistance states outside the well-known oscillations are demonstrated to arise from multiphoton assisted processes, by a detailed analysis of microwave photoresistance in two-dimensional electron systems under enhanced radiation. The concomitant resistance dropping and peak narrowing observed in the experiments are also reproduced. We show that the radiation-induced suppression of average resistance comes from virtual photon effect and exists throughout the whole magnetic field range.Comment: 4 pages, 2 figures, published versio

    Hadron-quark phase transition in asymmetric matter with dynamical quark masses

    Full text link
    The two-Equation of State (EoS) model is used to describe the hadron-quark phase transition in asymmetric matter formed at high density in heavy-ion collisions. For the quark phase, the three-flavor Nambu--Jona-Lasinio (NJL) effective theory is used to investigate the influence of dynamical quark mass effects on the phase transition. At variance to the MIT-Bag results, with fixed current quark masses, the main important effect of the chiral dynamics is the appearance of an End-Point for the coexistence zone. We show that a first order hadron-quark phase transition may take place in the region T=(50-80)MeV and \rho_B=(2-4)\rho_0, which is possible to be probed in the new planned facilities, such as FAIR at GSI-Darmstadt and NICA at JINR-Dubna. From isospin properties of the mixed phase somepossible signals are suggested. The importance of chiral symmetry and dynamical quark mass on the hadron-quark phase transition is stressed. The difficulty of an exact location of Critical-End-Point comes from its appearance in a region of competition between chiral symmetry breaking and confinement, where our knowledge of effective QCD theories is still rather uncertain.Comment: 13 pages, 16 figures (revtex

    The Spatial-Kinematic Structure of the Region of Massive Star Formation S255N on Various Scales

    Full text link
    The results of a detailed analysis of SMA, VLA, and IRAM observations of the region of massive star formation S255N in CO(2---1), \nh, \nhh, \co and some other lines is presented. Combining interferometer and single-dish data has enabled a more detailed investigation of the gas kinematics in the moleclar core on various spatial scales. There are no signs of rotation or isotropic compression on the scale of the region as whole. The largest fragments of gas (\approx0.3 pc) are located near the boundary of the regions of ionized hydrogen S255 and S257. Some smaller-scale fragments are associated with protostellar clumps. The kinetic temperatures of these fragments lie in the range 10---80 K. A circumstellar torus with inner radius Rin_{in} \approx 8000 AU and outer radius Rout_{out} 12 000 AU has been detected around the clump SMA1. The rotation profile indicates the existence of a central object with mass \approx 8.5/ sin 2 (i) M_\odot . SMA1 is resolved into two clumps, SMA1---NE and SMA1---SE, whose temperatures are \approx150 K and \approx25 K, respectively. To all appearances, the torus is involved in the accretion of surrounding gas onto the two protostellar clumps

    Effects of hadronic loops on the direct CP violation of BcB_{c}

    Full text link
    It is well known that the final state interaction plays an important role in the decays of BB-meson. The contribution of the final state interaction which is supposed to be long-distance effects, to the concerned processes can interfere with that of the short-distance effects produced via the tree and/or loop diagrams at quark-gluon level. The interference may provide a source for the direct CP violation ACP\mathcal{A}_{CP} in the process Bc+D0π+B_{c}^{+}\to D^{0}\pi^{+}. We find that a typical value of ACP\mathcal{A}_{CP} when the final state interaction effect is taken into account can be about -22% which is different from that without the final state interaction effect. Therefore, when we extract information on CP violation from the data which will be available at LHCb and the new experiments in BB-factories, the contribution from the final state interaction must be included. This study may be crucial for searching new physics in the future.Comment: 15 pages, 3 figures, 2 tables. More discussion adde

    New Spinor Field Realizations of the Non-Critical W3W_{3} String

    Full text link
    We investigate the new spinor field realizations of the W3W_{3} algebra, making use of the fact that the W3W_{3} algebra can be linearized by the addition of a spin-1 current. We then use these new realizations to build the nilpotent Becchi-Rouet-Stora--Tyutin (BRST) charges of the spinor non-critical W3W_{3} string.Comment: 8 pages, no figures, revtex4 style, accepted by Chin. Phys. Let
    corecore