34,009 research outputs found

    Meson-Meson Scattering in Relativistic Constraint Dynamics

    Full text link
    Dirac's relativistic constraint dynamics have been successfully applied to obtain a covariant nonperturbative description of QED and QCD bound states. We use this formalism to describe a microscopic theory of meson-meson scattering as a relativistic generalization of the nonrelativistic quark-interchange model developed by Barnes and Swanson.Comment: 5 pages, 1 figure in LaTex, talk present at the First Meeting of the APS Topical Group on Hadronic Physics (Fermilab, October 24-26, 2004

    Polarization Induced Switching Effect in Graphene Nanoribbon Edge-Defect Junction

    Full text link
    With nonequilibrium Green's function approach combined with density functional theory, we perform an ab initio calculation to investigate transport properties of graphene nanoribbon junctions self-consistently. Tight-binding approximation is applied to model the zigzag graphene nanoribbon (ZGNR) electrodes, and its validity is confirmed by comparison with GAUSSIAN03 PBC calculation of the same system. The origin of abnormal jump points usually appearing in the transmission spectrum is explained with the detailed tight-binding ZGNR band structure. Transport property of an edge defect ZGNR junction is investigated, and the tunable tunneling current can be sensitively controlled by transverse electric fields.Comment: 18 pages, 8 figure

    Relations between cognitive ability and creative design quality

    Get PDF
    The study aims to identify the relations between creative design quality and content of the memorising precedents, association, and combination of information processes in a design context. 71 participants were recruited to finish a creative design task. Think aloud and interview were conducted during and after the creative design task to understand the content of the memorising precedents, association, and combination of information processes. The 71 creative designs were then assessed by five experts in creative design. The results from this study revealed that participants who generated high-creativity design tend to memorize various topic-related precedents, associate items based on topic-related information, and combine topic-related information with products. Participants who generated low-creativity design tend to memorize characteristics of a specific space of the design topic, associate items based on specific topic-related information, and add the topic-related pattern to a product

    FRW and domain walls in higher spin gravity

    Get PDF
    We present exact solutions to Vasiliev's bosonic higher spin gravity equations in four dimensions with positive and negative cosmological constant that admit an interpretation in terms of domain walls, quasi-instantons and Friedman-Robertson-Walker (FRW) backgrounds. Their isometry algebras are infinite dimensional higher-spin extensions of spacetime isometries generated by six Killing vectors. The solutions presented are obtained by using a method of holomorphic factorization in noncommutative twistor space and gauge functions. In interpreting the solutions in terms of Fronsdal-type fields in spacetime, a field-dependent higher spin transformation is required, which is implemented at leading order. To this order, the scalar field solves Klein-Gordon equation with conformal mass in (anti) de Sitter space. We interpret the FRW solution with de Sitter asymptotics in the context of inflationary cosmology and we expect that the domain wall and FRW solutions are associated with spontaneously broken scaling symmetries in their holographic description. We observe that the factorization method provides a convenient framework for setting up a perturbation theory around the exact solutions, and we propose that the nonlinear completion of particle excitations over FRW and domain wall solutions requires black hole-like states.Comment: 63 page

    Effective renormalized multi-body interactions of harmonically confined ultracold neutral bosons

    Full text link
    We calculate the renormalized effective 2-, 3-, and 4-body interactions for N neutral ultracold bosons in the ground state of an isotropic harmonic trap, assuming 2-body interactions modeled with the combination of a zero-range and energy-dependent pseudopotential. We work to third-order in the scattering length a defined at zero collision energy, which is necessary to obtain both the leading-order effective 4-body interaction and consistently include finite-range corrections for realistic 2-body interactions. The leading-order, effective 3- and 4-body interaction energies are U3 = -(0.85576...)(a/l)^2 + 2.7921(1)(a/l)^3 + O[(a/l)^4] and U4 = +(2.43317...)(a/l)^3 + O[(a\l)^4], where w and l are the harmonic oscillator frequency and length, respectively, and energies are in units of hbar*w. The one-standard deviation error 0.0001 for the third-order coefficient in U3 is due to numerical uncertainty in estimating a slowly converging sum; the other two coefficients are either analytically or numerically exact. The effective 3- and 4-body interactions can play an important role in the dynamics of tightly confined and strongly correlated systems. We also performed numerical simulations for a finite-range boson-boson potential, and it was comparison to the zero-range predictions which revealed that finite-range effects must be taken into account for a realistic third-order treatment. In particular, we show that the energy-dependent pseudopotential accurately captures, through third order, the finite-range physics, and in combination with the multi-body effective interactions gives excellent agreement with the numerical simulations, validating our theoretical analysis and predictions.Comment: Updated introduction, correction of a few typos and sign error
    corecore