57,394 research outputs found

    Coherent output of photons from coupled superconducting transmission line resonators controlled by charge qubits

    Full text link
    We study the coherent control of microwave photons propagating in a superconducting waveguide consisting of coupled transmission line resonators, each of which is connected to a tunable charge qubit. While these coupled line resonators form an artificial photonic crystal with an engineered photonic band structure, the charge qubits collectively behave as spin waves in the low excitation limit, which modify the band-gap structure to slow and stop the microwave propagation. The conceptual exploration here suggests an electromagnetically controlled quantum device based on the on-chip circuit QED for the coherent manipulation of photons, such as the dynamic creation of laser-like output from the waveguide by pumping the artificial atoms for population inversion.Comment: 8 pages, 3 figure

    Determining SUSY Parameters in Chargino Pair-Production in e+ee^+e^- Collisions

    Get PDF
    In most supersymmetric theories, charginos χ~1,2±\tilde{\chi}^\pm_{1,2}, mixtures of charged color-neutral gauginos and higgsinos, belong to the class of the lightest supersymmetric particles. They are easy to observe at e+ee^+e^- colliders. By measuring the total cross sections and the left-right asymmetries with polarized electron beams in e+eχ~iχ~j+[i,j=1,2]e^+e^-\to\tilde{\chi}_i^-\tilde{\chi}_j^+ [i,j=1,2], the chargino masses and the gaugino-higgsino mixing angles can be determined. From these observables the fundamental SUSY parameters can be derived: the SU(2) gaugino mass M2M_2, the modulus μ|\mu| and cosΦμ\cos \Phi_\mu of the higgsino mass parameter, and tanβ=v2/v1\tan\beta = v_2/v_1, the ratio of the vacuum expectation values of the two neutral Higgs doublet fields. The solutions are unique; the CP-violating phase Φμ\Phi_\mu can be determined uniquely by analyzing effects due to the normal polarization of the charginos.Comment: 20 pages, 4 figures, uses axodraw.st

    Quantum information storage and state transfer based on spin systems

    Get PDF
    The idea of quantum state storage is generalized to describe the coherent transfer of quantum information through a coherent data bus. In this universal framework, we comprehensively review our recent systematical investigations to explore the possibility of implementing the physical processes of quantum information storage and state transfer by using quantum spin systems, which may be an isotropic antiferromagnetic spin ladder system or a ferromagnetic Heisenberg spin chain. Our studies emphasize the physical mechanisms and the fundamental problems behind the various protocols for the storage and transfer of quantum information in solid state systems.Comment: 11 pages, 9 figures, Review article on the quantum spin based quantum information processing, to appear the special issue of Low Temperature Physics dedicated to the 70-th anniversary of creation of concept "antiferromagnetism" in physics of magnetis

    Management of Digital Video Broadcasting Services in Open Delivery Platforms

    Get PDF
    The future of Digital Video Broadcasting (DVB) is moving towards solutions offering an efficient way of carrying interactive IP multimedia services over digital terrestrial broadcasting networks to handheld terminals. One of the most promising technologies is Digital Video Broadcasting-Handheld (DVB-H), at present under standardisation. Services deployed via this type of DVB technologies should enjoy reliability comparable to TV services and high quality standards. However, the market at present does not provide effective and economical solutions for the deployment of such services over multi-domain IP networks, due to their high level of unreliability. This paper focuses on service management, service level agreement (SLA) and network performance requirements of DVB-H services. Experimental results are presented concerning QoS sensitivity to network performance of DVB-H services delivered over a multi-domain IP network. Moreover, a solution for efficient and cost effective service management via QoS monitoring and control and network SLA design is proposed. The solution gives DVB-H operators the possibility of fully managing service QoS without being tied to third party operators

    The effects of disorder and interactions on the Anderson transition in doped Graphene

    Full text link
    We undertake an exact numerical study of the effects of disorder on the Anderson localization of electronic states in graphene. Analyzing the scaling behaviors of inverse participation ratio and geometrically averaged density of states, we find that Anderson metal-insulator transition can be introduced by the presence of quenched random disorder. In contrast with the conventional picture of localization, four mobility edges can be observed for the honeycomb lattice with specific disorder strength and impurity concentration. Considering the screening effects of interactions on disorder potentials, the experimental findings of the scale enlarges of puddles can be explained by reviewing the effects of both interactions and disorder.Comment: 7 pages, 7 figure
    corecore