224,593 research outputs found

    Evaluation of ASTER GDEM ver2 using GPS measurements and SRTM ver4.1 in China

    Get PDF
    The freely available ASTER GDEM ver2 was released by NASA and METI on October 17, 2011. As one of the most complete high resolution digital topographic data sets of the world to date, the ASTER GDEM covers land surfaces between 83°N and 83°S at a spatial resolution of 1 arc-second and will be a useful product for many applications, such as relief analysis, hydrological studies and radar interferometry. The stated improvements in the second version of ASTER GDEM benefit from finer horizontal resolution, offset adjustment and water body detection in addition to new observed ASTER scenes. This study investigates the absolute vertical accuracy of the ASTER GDEM ver2 at five study sites in China using ground control points (GCPs) from high accuracy GPS benchmarks, and also using a DEM-to-DEM comparison with the Consultative Group for International Agriculture Research Consortium for Spatial Information (CGIAR-CSI) SRTM DEM (Version 4.1). And then, the results are separated into GlobCover land cover classes to derive the spatial pattern of error. It is demonstrated that the RMSE (19m) and mean (-13m) values of ASTER GDEM ver2 against GPS-GCPs in the five study areas is lower than its first version ASTER GDEM ver1 (26m and -21m) as a result of the adjustment of the elevation offsets in the new version. It should be noted that the five study areas in this study are representative in terms of terrain types and land covers in China, and even for most of mid-latitude zones. It is believed that the ASTER GDEM offers a major alternative in accessibility to high quality elevation data

    The Coupled Cluster Method Applied to Quantum Magnets: A New LPSUBmm Approximation Scheme for Lattice Models

    Get PDF
    A new approximation hierarchy, called the LPSUBmm scheme, is described for the coupled cluster method (CCM). It is applicable to systems defined on a regular spatial lattice. We then apply it to two well-studied prototypical (spin-1/2 Heisenberg antiferromagnetic) spin-lattice models, namely: the XXZ and the XY models on the square lattice in two dimensions. Results are obtained in each case for the ground-state energy, the ground-state sublattice magnetization and the quantum critical point. They are all in good agreement with those from such alternative methods as spin-wave theory, series expansions, quantum Monte Carlo methods and the CCM using the alternative LSUBmm and DSUBmm schemes. Each of the three CCM schemes (LSUBmm, DSUBmm and LPSUBmm) for use with systems defined on a regular spatial lattice is shown to have its own advantages in particular applications

    Controlling diffusive transport in confined geometries

    Full text link
    We analyze the diffusive transport of Brownian particles in narrow channels with periodically varying cross-section. The geometrical confinements lead to entropic barriers, the particle has to overcome in order to proceed in transport direction. The transport characteristics exhibit peculiar behaviors which are in contrast to what is observed for the transport in potentials with purely energetic barriers. By adjusting the geometric parameters of the channel one can effectively tune the transport and diffusion properties. A prominent example is the maximized enhancement of diffusion for particular channel parameters. The understanding of the role of channel-shape provides the possibility for a design of stylized channels wherein the quality of the transport can be efficiently optimized.Comment: accepted for publication in Acta Physica Polonica

    Stellar mass versus stellar velocity dispersion: which is better for linking galaxies to their dark matter halos?

    Full text link
    It was recently suggested that, compared to its stellar mass (M*), the central stellar velocity dispersion (sigma*) of a galaxy might be a better indicator for its host dark matter halo mass. Here we test this hypothesis by estimating the dark matter halo mass for central alaxies in groups as function of M* and sigma*. For this we have estimated the redshift-space cross-correlation function (CCF) between the central galaxies at given M* and sigma* and a reference galaxy sample, from which we determine both the projected CCF, w_p(r_p), and the velocity dispersion profile (VDP) of satellites around the centrals. A halo mass is then obtained from the average velocity dispersion within the virial radius. At fixed M*, we find very weak or no correlation between halo mass and sigma*. In contrast, strong mass dependence is clearly seen even when sigma* is limited to a narrow range. Our results thus firmly demonstrate that the stellar mass of central galaxies is still a good (if not the best) indicator for dark matter halo mass, better than the stellar velocity dispersion. The dependence of galaxy clustering on sigma* fixed M*, as recently discovered by Wake et al. (2012), may be attributed to satellite galaxies, for which the tidal stripping occurring within halos has stronger effect on stellar mass than on central stellar velocity dispersion.Comment: 4 pages, 4 figures, accepted for publication in ApJ Letters, minor revisions in the tex

    Transverse Magnetic Susceptibility of a Frustrated Spin-12\frac{1}{2} J1J_{1}--J2J_{2}--J1⊥J_{1}^{\perp} Heisenberg Antiferromagnet on a Bilayer Honeycomb Lattice

    Full text link
    We use the coupled cluster method (CCM) to study a frustrated spin-12\frac{1}{2} J1J_{1}--J2J_{2}--J1⊥J_{1}^{\perp} Heisenberg antiferromagnet on a bilayer honeycomb lattice with AAAA stacking. Both nearest-neighbor (NN) and frustrating next-nearest-neighbor antiferromagnetic (AFM) exchange interactions are present in each layer, with respective exchange coupling constants J1>0J_{1}>0 and J2≡κJ1>0J_{2} \equiv \kappa J_{1} > 0. The two layers are coupled with NN AFM exchanges with coupling strength J1⊥≡δJ1>0J_{1}^{\perp}\equiv \delta J_{1}>0. We calculate to high orders of approximation within the CCM the zero-field transverse magnetic susceptibility χ\chi in the N\'eel phase. We thus obtain an accurate estimate of the full boundary of the N\'eel phase in the κδ\kappa\delta plane for the zero-temperature quantum phase diagram. We demonstrate explicitly that the phase boundary derived from χ\chi is fully consistent with that obtained from the vanishing of the N\'eel magnetic order parameter. We thus conclude that at all points along the N\'eel phase boundary quasiclassical magnetic order gives way to a nonclassical paramagnetic phase with a nonzero energy gap. The N\'eel phase boundary exhibits a marked reentrant behavior, which we discuss in detail
    • …
    corecore