52,219 research outputs found

    Optimal Quantum State Estimation with Use of the No-Signaling Principle

    Full text link
    A simple derivation of the optimal state estimation of a quantum bit was obtained by using the no-signaling principle. In particular, the no-signaling principle determines a unique form of the guessing probability independently of figures of merit, such as the fidelity or information gain. This proves that the optimal estimation for a quantum bit can be achieved by the same measurement for almost all figures of merit.Comment: 3 pages, 1 figur

    Shortcuts through Colocation Facilities

    Full text link
    Network overlays, running on top of the existing Internet substrate, are of perennial value to Internet end-users in the context of, e.g., real-time applications. Such overlays can employ traffic relays to yield path latencies lower than the direct paths, a phenomenon known as Triangle Inequality Violation (TIV). Past studies identify the opportunities of reducing latency using TIVs. However, they do not investigate the gains of strategically selecting relays in Colocation Facilities (Colos). In this work, we answer the following questions: (i) how Colo-hosted relays compare with other relays as well as with the direct Internet, in terms of latency (RTT) reductions; (ii) what are the best locations for placing the relays to yield these reductions. To this end, we conduct a large-scale one-month measurement of inter-domain paths between RIPE Atlas (RA) nodes as endpoints, located at eyeball networks. We employ as relays Planetlab nodes, other RA nodes, and machines in Colos. We examine the RTTs of the overlay paths obtained via the selected relays, as well as the direct paths. We find that Colo-based relays perform the best and can achieve latency reductions against direct paths, ranging from a few to 100s of milliseconds, in 76% of the total cases; 75% (58% of total cases) of these reductions require only 10 relays in 6 large Colos.Comment: In Proceedings of the ACM Internet Measurement Conference (IMC '17), London, GB, 201

    Social network analysis in operations and supply chain management: A review and revised research agenda

    Get PDF
    Purpose Social network analysis (SNA) seeks to manage the connections between entities through investigating and understanding behaviours and relationships. This study demonstrates the increasing relevance of social network approaches to solving contemporary and looming operations management (OM) and supply chain management (SCM) problems; including the coordination operations challenges raised by increased connectivity. Design/methodology/approach The systematic literature review approach adopted here examines 63 papers in OM and SCM published between 2000 and 2019. To-date OM reviews on SNA have focussed on discussing archetypal supply chains, what differentiates this study is the focus on how value was created in other forms of chains and operations. Findings This study reveals that current SNA adoption in OM is dominated by a manufacturing style focus on linear, sequential value creation, with a resulting focus only on sequential interdependence. SNA studies on reciprocally co-ordinated value creation (e.g. many service and network operations) are shown to have been neglected and are linked to a new agenda on contemporary management issues. Research limitations/implications Beyond encouraging the use of SNA, this study seeks to re-orient SNA approaches towards how contemporary services and networks create value. Originality/value Through adopting a unique combination of approaches and frameworks, this study challenges extant work to offer a substantially revised agenda for SNA use in Operations and Supply Chain Management

    W physics at the ILC with polarized beams as a probe of the Littlest Higgs Model

    Full text link
    We study the possibility of using W pair production and leptonic decay of one of the W's at the ILC with polarized beams as a probe of the Littlest Higgs Model. We consider cross-sections, polarization fractions of the W's, leptonic decay energy and angular distributions, and left-right polarization asymmetry as probes of the model. With parameter values allowed by present experimental constraints detectable effects on these observables at typical ILC energies of 500 GeV and 800 GeV will be present. Beam polarization is further found to enhance the sensitivity.Comment: 17 pages, plain latex, 6 figures, replaced with version accepted by JHEP, typographical errors removed, notation and references improved, new references added, explanation added in appendix regarding beam polarization dependenc

    Nagy-Soper subtraction scheme for multiparton final states

    Full text link
    In this work, we present the extension of an alternative subtraction scheme for next-to-leading order QCD calculations to the case of an arbitrary number of massless final-state partons. The scheme is based on the splitting kernels of an improved parton shower and comes with a reduced number of final state momentum mappings. While a previous publication including the setup of the scheme has been restricted to cases with maximally two massless partons in the final state, we here provide the final state real emission and integrated subtraction terms for processes with any number of massless partons. We apply our scheme to three jet production at lepton colliders at next-to-leading order and present results for the differential C parameter distribution.Comment: 45 pages, 5 figures v2: several references added; v3: title changed, references and a discussion of further scaling improvement added. Corresponds to published journal versio
    corecore