6,392 research outputs found

    Audio-visual object localization and separation using low-rank and sparsity

    Get PDF
    The ability to localize visual objects that are associated with an audio source and at the same time seperate the audio signal is a corner stone in several audio-visual signal processing applications. Past efforts usually focused on localizing only the visual objects, without audio separation abilities. Besides, they often rely computational expensive pre-processing steps to segment images pixels into object regions before applying localization approaches. We aim to address the problem of audio-visual source localization and separation in an unsupervised manner. The proposed approach employs low-rank in order to model the background visual and audio information and sparsity in order to extract the sparsely correlated components between the audio and visual modalities. In particular, this model decomposes each dataset into a sum of two terms: the low-rank matrices capturing the background uncorrelated information, while the sparse correlated components modelling the sound source in visual modality and the associated sound in audio modality. To this end a novel optimization problem, involving the minimization of nuclear norms and matrix â„“1-norms is solved. We evaluated the proposed method in 1) visual localization and audio separation and 2) visual-assisted audio denoising. The experimental results demonstrate the effectiveness of the proposed method

    Matter-wave bistability in coupled atom-molecule quantum gases

    Full text link
    We study the matter-wave bistability in coupled atom-molecule quantum gases, in which heteronuclear molecules are created via an interspecies Feshbach resonance involving either two-species Bose or two-species Fermi atoms at zero temperature. We show that the resonant two-channel Bose model is equivalent to the nondegenerate parametric down-conversion in quantum optics, while the corresponding Fermi model can be mapped to a quantum optics model that describes a single-mode laser field interacting with an ensemble of inhomogeneously broadened two-level atoms. Using these analogy and the fact that both models are subject to the Kerr nonlinearity due to the two-body s-wave collisions, we show that under proper conditions, the population in the molecular state in both models can be made to change with the Feshbach detuning in a bistable fashion.Comment: 6 pages, 5 figure

    Experimental Procedures for Stub Column Tests

    Get PDF
    In this paper a total of 36 stub columns was tested by two different experimental procedures, namely the FEM and AISI procedures, to investigate the difference in the ultimate load between these procedures. Of these 26 were carried out in the pin-ended condition according to FEM, the rest were in the fixed-end condition according to AlSI specification. It is shown that the failure loads obtained by the two experimental procedures were very close to each other. Both procedures worked well. The AISI procedure is recommended as the standard procedure

    Blind audio-visual localization and separation via low-rank and sparsity

    Get PDF
    The ability to localize visual objects that are associated with an audio source and at the same time to separate the audio signal is a cornerstone in audio-visual signal-processing applications. However, available methods mainly focus on localizing only the visual objects, without audio separation abilities. Besides that, these methods often rely on either laborious preprocessing steps to segment video frames into semantic regions, or additional supervisions to guide their localization. In this paper, we aim to address the problem of visual source localization and audio separation in an unsupervised manner and avoid all preprocessing or post-processing steps. To this end, we devise a novel structured matrix decomposition method that decomposes the data matrix of each modality as a superposition of three terms: 1) a low-rank matrix capturing the background information; 2) a sparse matrix capturing the correlated components among the two modalities and, hence, uncovering the sound source in visual modality and the associated sound in audio modality; and 3) a third sparse matrix accounting for uncorrelated components, such as distracting objects in visual modality and irrelevant sound in audio modality. The generality of the proposed method is demonstrated by applying it onto three applications, namely: 1) visual localization of a sound source; 2) visually assisted audio separation; and 3) active speaker detection. Experimental results indicate the effectiveness of the proposed method on these application domains

    The Influence of Molecular Adsorption on Elongating Gold Nanowires

    Full text link
    Using molecular dynamics simulations, we study the impact of physisorbing adsorbates on the structural and mechanical evolution of gold nanowires (AuNWs) undergoing elongation. We used various adsorbate models in our simulations, with each model giving rise to a different surface coverage and mobility of the adsorbed phase. We find that the local structure and mobility of the adsorbed phase remains relatively uniform across all segments of an elongating AuNW, except for the thinning region of the wire where the high mobility of Au atoms disrupts the monolayer structure, giving rise to higher solvent mobility. We analyzed the AuNW trajectories by measuring the ductile elongation of the wires and detecting the presence of characteristic structural motifs that appeared during elongation. Our findings indicate that adsorbates facilitate the formation of high-energy structural motifs and lead to significantly higher ductile elongations. In particular, our simulations result in a large number of monatomic chains and helical structures possessing mechanical stability in excess of what we observe in vacuum. Conversely, we find that a molecular species that interacts weakly (i.e., does not adsorb) with AuNWs worsens the mechanical stability of monatomic chains.Comment: To appear in Journal of Physical Chemistry

    Dynamics of two interacting Bose-Einstein condensates

    Full text link
    We analize the dynamics of two trapped interacting Bose-Einstein condensates and indentify two regimes for the evolution: the regime of slow periodic oscillations and the regime of strong non-linear mixing leading to the damping of the relative motion of the condensates. We compare our predictions with an experiment recently performed at JILA.Comment: 4 pages RevTeX, 3 eps figure
    • …
    corecore