60,388 research outputs found
Description of Charged Particle Pseudorapidity Distributions in Pb+Pb Collisions with Tsallis Thermodynamics
The centrality dependence of pseudorapidity distributions for charged
particles produced in Au+Au collisions at GeV and 200 GeV
at RHIC, and in Pb+Pb collisions at TeV at LHC are
investigated in the fireball model, assuming that the rapidity axis is
populated with fireballs following one distribution function. We assume that
the particles in the fireball fulfill the Tsallis distribution. The theoretical
results are compared with the experimental measurements and a good agreement is
found. Using these results, the pseudorapidity distributions of charged
particles produced in Pb+Pb central collisions at TeV and
10 TeV are predicted.Comment: 9 pages, 8 figure
Is the meson dynamically generated?
We study the problem whether the meson is generated `dynamically'. A
pedagogical analysis on the toy O(N) linear sigma model is performed and we
find that the large limit and the limit does not
commute. The sigma meson may not necessarily be described as a dynamically
generated resonance. On the contrary, the sigma meson may be more appropriately
described by considering it as an explicit degree of freedom in the effective
lagrangian.Comment: Contribution to ``Quark Confinement and Hadron Spectrum VII'', 2--7
Sept. 2006, Ponta Delgada, Acores, Portuga
On the scalar nonet in the extended Nambu Jona-Lasinio model
We discuss the lightest scalar resonances, , ,
and in the extended Nambu Jona-Lasinio model. We find
that the model parameters can be tuned, but unnaturally, to accommodate for
those scalars except the . We also discuss problems encountered in
the K Matrix unitarization approximation by using counting technique.Comment: 23 pages 3 eps figures, To appear in Nucl. Phys.
On the Nature of X(4260)
We study the property of resonance by re-analyzing all experimental
data available, especially the cross section data. The final state
interactions of the , couple channel system are also taken
into account. A sizable coupling between the and is
found. The inclusion of the data indicates a small value of
eV.Comment: Refined analysis with new experimental data included. 13 page
Optical study of phase transitions in single-crystalline RuP
RuP single crystals of MnP-type orthorhombic structure were synthesized by
the Sn flux method. Temperature-dependent x-ray diffraction measurements reveal
that the compound experiences two structural phase transitions, which are
further confirmed by enormous anomalies shown in temperature-dependent
resistivity and magnetic susceptibility. Particularly, the resistivity drops
monotonically upon temperature cooling below the second transition, indicating
that the material shows metallic behavior, in sharp contrast with the
insulating ground state of polycrystalline samples. Optical conductivity
measurements were also performed in order to unravel the mechanism of these two
transitions. The measurement revealed a sudden reconstruction of band structure
over a broad energy scale and a significant removal of conducting carriers
below the first phase transition, while a charge-density-wave-like energy gap
opens below the second phase transition.Comment: 5 pages, 6 figure
Field-Induced Ferromagnetic Order and Colossal Magnetoresistance in La_{1.2}Sr_{1.8}Mn_2O_7: a ^{139}La NMR study
In order to gain insights into the origin of colossal magneto-resistance
(CMR) in manganese oxides, we performed a ^{139}La NMR study in the
double-layered compound La_{1.2}Sr_{1.8}Mn_2O_7. We find that above the Curie
temperature T_C=126 K, applying a magnetic field induces a long-range
ferromagnetic order that persists up to T=330 K. The critical field at which
the induced magnetic moment is saturated coincides with the field at which the
CMR effect reaches to a maximum. Our results therefore indicate that the CMR
observed above T_C in this compound is due to the field-induced ferromagnetism
that produces a metallic state via the double exchange interaction
Recommended from our members
Highly Stable Luminous "snakes" from CsPbX3 Perovskite Nanocrystals Anchored on Amine-Coated Silica Nanowires
CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals (NCs) are known for their exceptional optoelectronic properties, yet the material's instability toward polar solvents, heat, or UV irradiation greatly limits its further applications. Herein, an efficient in situ growing strategy has been developed to give highly stable perovskite NC composites (abbreviated CsPbX3@CA-SiO2) by anchoring CsPbX3 NCs onto silica nanowires (NWs), which effectively depresses the optical degradation of their photoluminescence (PL) and enhances stability. The preparation of surface-functionalized serpentine silica NWs is realized by a sol-gel process involving hydrolysis of a mixture of tetraethyl orthosilicate (TEOS), 3-aminopropyltriethoxysilane (APTES), and trimethoxy(octadecyl)silane (TMODS) in a water/oil emulsion. The serpentine NWs are formed via an anisotropic growth with lengths up to 8 μm. The free amino groups are employed as surface ligands for growing perovskite NCs, yielding distributed monodisperse NCs (∼8 nm) around the NW matrix. The emission wavelength is tunable by simple variation of the halide compositions (CsPbX3, X = Cl, Br, or I), and the composites demonstrate a high photoluminescence quantum yield (PLQY 32-69%). Additionally, we have demonstrated the composites CsPbX3@CA-SiO2 can be self-woven to form a porous 3D hierarchical NWs membrane, giving rise to a superhydrophobic surface with hierarchical micro/nano structural features. The resulting composites exhibit high stability toward water, heat, and UV irradiation. This work elucidates an effective strategy to incorporate perovskite nanocrystals onto functional matrices as multifunctional stable light sources
- …