269,824 research outputs found

    Evolutionary L∞ identification and model reduction for robust control

    Get PDF
    An evolutionary approach for modern robust control oriented system identification and model reduction in the frequency domain is proposed. The technique provides both an optimized nominal model and a 'worst-case' additive or multiplicative uncertainty bounding function which is compatible with robust control design methodologies. In addition, the evolutionary approach is applicable to both continuous- and discrete-time systems without the need for linear parametrization or a confined problem domain for deterministic convex optimization. The proposed method is validated against a laboratory multiple-input multiple-output (MIMO) test rig and benchmark problems, which show a higher fitting accuracy and provides a tighter L�¢���� error bound than existing methods in the literature do

    Comparisons and Applications of Four Independent Numerical Approaches for Linear Gyrokinetic Drift Modes

    Full text link
    To help reveal the complete picture of linear kinetic drift modes, four independent numerical approaches, based on integral equation, Euler initial value simulation, Euler matrix eigenvalue solution and Lagrangian particle simulation, respectively, are used to solve the linear gyrokinetic electrostatic drift modes equation in Z-pinch with slab simplification and in tokamak with ballooning space coordinate. We identify that these approaches can yield the same solution with the difference smaller than 1\%, and the discrepancies mainly come from the numerical convergence, which is the first detailed benchmark of four independent numerical approaches for gyrokinetic linear drift modes. Using these approaches, we find that the entropy mode and interchange mode are on the same branch in Z-pinch, and the entropy mode can have both electron and ion branches. And, at strong gradient, more than one eigenstate of the ion temperature gradient mode (ITG) can be unstable and the most unstable one can be on non-ground eigenstates. The propagation of ITGs from ion to electron diamagnetic direction at strong gradient is also observed, which implies that the propagation direction is not a decisive criterion for the experimental diagnosis of turbulent mode at the edge plasmas.Comment: 12 pages, 10 figures, accept by Physics of Plasma

    Infrared imaging investigation of temperature fluctuation and spatial distribution for a large laminated lithium ion power battery

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The present study investigates the thermal behaviors of a naturally cooled NCM-type LIB (LiNi1−x−yCoxMnyO2 as cathode) from an experimental and systematic approach. The temperature distribution was acquired for different discharge rates and Depth of Discharge (DOD) by the infrared imaging (IR) technology. Two new factors, the temperature variance ( ) and local overheating index (LOH index), were proposed to assess the temperature fluctuation and distribution. Results showed that the heat generation rate was higher on the cathode side than that on the anode side due to the different resistivity of current collectors. For a low-power discharge, the eventual stable high-temperature zone occurred in the center of the battery, while with a high-power discharge, the upper part of the battery was the high temperature region from the very beginning of discharge. It was found that the temperature variance ( ) and local overheating index (LOH index) were capable of holistically exhibiting the temperature non-uniformity both on numerical fluctuation and spatial distribution with varying discharge rates and DOD. With increasing the discharge rate and DOD, temperature distribution showed an increasingly non-uniform trend, especially at the initial and final stage of high-power discharge, the heat accumulation and concentration area increased rapidly

    Baryon enhancement in high-density QCD and relativistic heavy ion collisions

    Full text link
    We argue that the collinear factorization of the fragmentation functions in high energy nuclear collisions breaks down at transverse momenta pTQs/gp_T \lesssim Q_s/g due to high parton densities in the colliding hadrons and/or nuclei. We find that gluon recombination dominates in that pTp_T region. We calculate the inclusive cross-section for π\pi meson and nucleon production using the low energy theorems for the scale anomaly in QCD, and compare our quantitative baryon-to-meson ratio to the RHIC data.Comment: 4 pages, 2 figure; Contribution to Quark Matter 2008 in Jaipur, India; submitted to J. Phys.
    corecore