32,016 research outputs found

    Convolutional Networks for Object Category and 3D Pose Estimation from 2D Images

    Full text link
    Current CNN-based algorithms for recovering the 3D pose of an object in an image assume knowledge about both the object category and its 2D localization in the image. In this paper, we relax one of these constraints and propose to solve the task of joint object category and 3D pose estimation from an image assuming known 2D localization. We design a new architecture for this task composed of a feature network that is shared between subtasks, an object categorization network built on top of the feature network, and a collection of category dependent pose regression networks. We also introduce suitable loss functions and a training method for the new architecture. Experiments on the challenging PASCAL3D+ dataset show state-of-the-art performance in the joint categorization and pose estimation task. Moreover, our performance on the joint task is comparable to the performance of state-of-the-art methods on the simpler 3D pose estimation with known object category task

    Dynamics of ultra-intense circularly polarized solitons under inhomogeneous plasmas

    Full text link
    The dynamics of the ultra-intense circularly polarized solitons under inhomogeneous plasmas are examined. The interaction is modeled by the Maxwell and relativistic hydrodynamic equations and is solved with fully implicit energy-conserving numerical scheme. It is shown that a propagating weak soliton can be decreased and reflected by increasing plasma background, which is consistent with the existing studies based on hypothesis of weak density response. However it is found that ultra-intense soliton is well trapped and kept still when encountering increasing background. Probably, this founding can be applied for trapping and amplifying high-intensity laser-fields.Comment: 4 pages, 3 figures, submitted to Phys. Plasma

    Wood-Inspired Morphologically Tunable Aligned Hydrogel for High-Performance Flexible All-Solid-State Supercapacitors

    Get PDF
    Oriented microstructures are widely found in various biological systems for multiple functions. Such anisotropic structures provide low tortuosity and sufficient surface area, desirable for the design of high-performance energy storage devices. Despite significant efforts to develop supercapacitors with aligned morphology, challenges remain due to the predefined pore sizes, limited mechanical flexibility, and low mass loading. Herein, a wood-inspired flexible all-solid-state hydrogel supercapacitor is demonstrated by morphologically tuning the aligned hydrogel matrix toward high electrode-materials loading and high areal capacitance. The highly aligned matrix exhibits broad morphological tunability (47–12 µm), mechanical flexibility (0°–180° bending), and uniform polypyrrole loading up to 7 mm thick matrix. After being assembled into a solid-state supercapacitor, the areal capacitance reaches 831 mF cm−2 for the 12 µm matrix, which is 259% times of the 47 µm matrix and 403% times of nonaligned matrix. The supercapacitor also exhibits a high energy density of 73.8 µWh cm−2, power density of 4960 µW cm−2, capacitance retention of 86.5% after 1000 cycles, and bending stability of 95% after 5000 cycles. The principle to structurally design the oriented matrices for high electrode material loading opens up the possibility for advanced energy storage applications

    Suppressing longitudinal double-layer oscillations by using elliptically polarized laser pulses in the hole-boring radiation pressure acceleration regime

    Full text link
    It is shown that well collimated mono-energetic ion beams with a large particle number can be generated in the hole-boring radiation pressure acceleration regime by using an elliptically polarized laser pulse with appropriate theoretically determined laser polarization ratio. Due to the J×B\bm{J}\times\bm{B} effect, the double-layer charge separation region is imbued with hot electrons that prevent ion pileup, thus suppressing the double-layer oscillations. The proposed mechanism is well confirmed by Particle-in-Cell simulations, and after suppressing the longitudinal double-layer oscillations, the ion beams driven by the elliptically polarized lasers own much better energy spectrum than those by circularly polarized lasers.Comment: 6 pages, 5 figures, Phys. Plasmas (2013) accepte

    Dense feature correspondence for video-based endoscope three-dimensional motion tracking

    Full text link
    This paper presents an improved video-based endoscope tracking approach on the basis of dense feature correspondence. Currently video-based methods often fail to track the endoscope motion due to low-quality endoscopic video images. To address such failure, we use image texture information to boost the tracking performance. A local image descriptor - DAISY is introduced to efficiently detect dense texture or feature information from endoscopic images. After these dense feature correspondence, we compute relative motion parameters between the previous and current endoscopic images in terms of epipolar geometric analysis. By initializing with the relative motion information, we perform 2-D/3-D or video-volume registration and determine the current endoscope pose information with six degrees of freedom (6DoF) position and orientation parameters. We evaluate our method on clinical datasets. Experimental results demonstrate that our proposed method outperforms state-of-the-art approaches. The tracking error was significantly reduced from 7.77 mm to 4.78 mm. © 2014 IEEE
    • …
    corecore