21,577 research outputs found
Orientation and strain modulated electronic structures in puckered arsenene nanoribbons
Orthorhombic arsenene was recently predicted as an indirect bandgap
semiconductor. Here, we demonstrate that nanostructuring arsenene into
nanoribbons can successfully transform the bandgap to be direct. It is found
that direct bandgaps hold for narrow armchair but wide zigzag nanoribbons,
which is dominated by the competition between the in-plane and out-of-plane
bondings. Moreover, straining the nanoribbons also induces a direct bandgap and
simultaneously modulates effectively the transport property. The gap energy is
largely enhanced by applying tensile strains to the armchair structures. In the
zigzag ones, a tensile strain makes the effective mass of holes much higher
while a compressive strain cause it much lower than that of electrons. Our
results are crutial to understand and engineer the electronic properties of two
dimensional materials beyond the planar ones like graphene
Magnetic spin moment reduction in photoexcited ferromagnets through exchange interaction quenching: Beyond the rigid band approximation
The exchange interaction among electrons is one of the most fundamental
quantum mechanical interactions in nature and underlies any magnetic phenomena
from ferromagnetic ordering to magnetic storage. The current technology is
built upon a thermal or magnetic field, but a frontier is emerging to directly
control magnetism using ultrashort laser pulses. However, little is known about
the fate of the exchange interaction. Here we report unambiguously that
photoexcitation is capable of quenching the exchange interaction in all three
ferromagnetic metals. The entire process starts with a small number of
photoexcited electrons which build up a new and self-destructive potential that
collapses the system into a new state with a reduced exchange splitting. The
spin moment reduction follows a Bloch-like law as , where is
the absorbed photon energy and is a scaling exponent. A good agreement
is found between the experimental and our theoretical results. Our findings may
have a broader implication for dynamic electron correlation effects in
laser-excited iron-based superconductors, iron borate, rare-earth
orthoferrites, hematites and rare-earth transition metal alloys.Comment: 16 pages, 3 figures, one supplementary material fil
Combined approach for analysing evolutionary power spectra of a track-soil system under moving random loads
© 2019, The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature. The pseudo-excitation method combined with the integral transform method (PEM-ITM) is presented to investigate the ground vibration of a coupled track-soil system induced by moving random loads. Commonly in the track model, the rail, sleepers, rail pads, and ballast are modelled as an infinite Euler beam, discretely distributed masses, discretely distributed vertical springs, and a viscoelastic layer, respectively. The soil is regarded as a homogenous isotropic half-space coupled with the track using the boundary condition at the surface of the ground. By introducing a pseudo-excitation, the random vibration analysis of the coupled system is converted into a harmonic analysis. The analytical form of evolutionary power spectral density responses of the simplified coupled track-soil system under a random moving load is derived in the frequency/wavenumber domain by PEM-ITM. In the numerical examples, the effects of different parameters, such as the moving speed, the soil properties, and the coherence of moving loads, on the ground response are investigated
Generating high-order optical and spin harmonics from ferromagnetic monolayers
High-order harmonic generation (HHG) in solids has entered a new phase of
intensive research, with envisioned band-structure mapping on an ultrashort
time scale. This partly benefits from a flurry of new HHG materials discovered,
but so far has missed an important group. HHG in magnetic materials should have
profound impact on future magnetic storage technology advances. Here we
introduce and demonstrate HHG in ferromagnetic monolayers. We find that HHG
carries spin information and sensitively depends on the relativistic spin-orbit
coupling; and if they are dispersed into the crystal momentum space,
harmonics originating from real transitions can be -resolved and carry
the band structure information. Geometrically, the HHG signal is sensitive to
spatial orientations of monolayers. Different from the optical counterpart, the
spin HHG, though probably weak, only appears at even orders, a consequence of
SU(2) symmetry. Our findings open an unexplored frontier -- magneto-high-order
harmonic generation.Comment: 19 pages, 4 figure
Structural phase control of (LaNdSr)CuO thin films by epitaxial growth technique
Epitaxial growth of (LaNdSr)CuO thin films was
studied by pulsed-laser deposition technique on three different substrates,
SrTiO (100), LaSrAlO (001), and YAlO (001). The
(Nd,Sr,Ce)CuO-type structure appears at the initial growth stage on
SrTiO (100) when the film is deposited under the growth conditions
optimized for (La,Sr)CuO. This (Nd,Sr,Ce)CuO-type structure can
be eliminated by increasing the substrate temperature and the laser repetition
frequency. Films on LaSrAlO (001) maintain a LaCuO-type structure
as bulk samples, but those on YAlO (001) show phase separation into
LaCuO- and NdCuO-type structures. Such complicated results are
explained in terms of the competition between lattice misfit and thermodynamic
conditions. Interestingly the films with LaCuO-type structure prepared
on SrTiO and LaSrAlO show different surface structures and transport
properties. The results indicate the possibility of controlling charge stripes
of (LaNdSr)CuO as was demonstrated in
(La,Ba)CuO thin films by Sato et al. (Phys. Rev. B {\bf 62}, R799
(2000)).Comment: 5 pages, 6 EPS figure, accepted for publication in Phys. Rev.
Polarization properties of Raman scattering by surface phonon polaritons in GaAsP nanowires
Strong resonant enhancement of Raman scattering on photonic resonance was observed in GaAsP semiconductor nanowires. The enhancement allowed for detailed studies of the surface phonon polariton (SPhP) scattering peak on individual nanowires. In particular, for the first time, the effect of the nanowire cross section shape on SPhP properties has been investigated. It was found that the cross section flattening induces a strong polarisation and a spectral shift of SPhPs supported by such nanowire. The assisting numerical simulations allowed to link the induced polarisation effect to a splitting of the resonant HE11 mode in the flattened nanowire. The observed spectral shift of SPhP has been also theoretically reproduced in elliptical approximation for the flattened cross section. The obtained results pave a ground for engineering of SPhP polarisation response and accurate spectral control of SPhPs in applications utilising the nanowire morphology
Extended calculations of energy levels, radiative properties, , hyperfine interaction constants, and Land\'e -factors for nitrogen-like \mbox{Ge XXVI}
Employing two state-of-the-art methods, multiconfiguration
Dirac--Hartree--Fock and second-order many-body perturbation theory, highly
accurate calculations are performed for the lowest 272 fine-structure levels
arising from the , , , ~(), (), and ()
configurations in nitrogen-like Ge XXVI. Complete and consistent atomic data,
including excitation energies, lifetimes, wavelengths, hyperfine structures,
Land\'e -factors, and E1, E2, M1, M2 line strengths, oscillator
strengths, and transition rates among these 272 levels are provided.
Comparisons are made between the present two data sets, as well as with other
available experimental and theoretical values. The present data are accurate
enough for identification and deblending of emission lines involving the
levels, and are also useful for modeling and diagnosing fusion plasmas
- …